

    
      
          
            
  
PyPond - Python Pond timeseries library.


Overview

PyPond is a Python implementation of the JavaScript Pond timeseries
library [http://software.es.net/pond/]. At a very high level, both
implementations offer classes and structures to collect, manipulate and
transmit timeseries data. Time series transmission is done via a
JSON-based wire format.

This implementation is available on
GitHub [https://github.com/esnet/pypond] and the API documentation is
available at software.es.net [http://software.es.net/pypond/] (and
alternately on RTD [http://pypond.readthedocs.io/en/latest/]).

PyPond runs on python 2.7 and 3.3 through 3.6.




Core Documentation

The main project site [http://software.es.net/pond/] has extensive
documentation on the various structures (Event, TimeRange, TimeSeries,
etc) that both implementations use internally. There is no need to
duplicate that conceptual documentation here since the python
implementation follows the same API and uses the same structures.

The only real difference with pypond is that the method names have been
changed to their obvious pythonic corollaries (obj.toString()
becomes obj.to_string()) and any comparison methods named .is()
in the JavaScript version have been renamed to .same() in pypond
since is is a reserved word in python.

The tests [https://github.com/esnet/pypond/tree/master/tests] can
also be referred to as a fairly complete set of examples as well.


Developer Documentation


	API Documentation

	Notes on time handling
	UTC vs. local time

	Precision





	Data columns: field_spec and field_path
	field_path

	field_spec

	field_spec_list





	Fill and other sanitizing methods
	Fill

	Rename

	Align

	Rate (derivative)





	Release notes
	0.4

	0.5





	Running the tests











          

      

      

    

  

    
      
          
            
  
API Documentation

Detailed API documentation.  The tests [https://github.com/esnet/pypond/tree/master/tests] can also be referred to as a fairly complete set of examples as well.


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
Notes on time handling


UTC vs. local time


Initializing Event objects

All of the Event variants can be initialized with  UTC milliseconds since the epoch, or an aware python datetime object. If a naive datetime object is passed in, an exception will be raised. When passing in a datetime object, it is encouraged [https://www.youtube.com/watch?v=-5wpm-gesOY] that they be in UTC as well.

Be aware that if an aware non-UTC/local time datetime object is passed in, a warning will be issued, it will be converted to a UTC datetime object and that’s what will be used internally.  The conversion will be done like this using the python datetime library and the third party pytz library thusly:

    dtime.astimezone(pytz.UTC)





And the resulting datetime object will be converted to milliseconds (see section on precision).

This is for consistency, for parity with the JavaScript Date library that uses epoch ms at its core, and because the Pond/PyPond wire format relies on epoch ms. One really can’t go wrong with initially reporting all of their events using milliseconds since the epoch. Please consider doing that.




Rendering in local time

Of course there are cases where is desirable to represent time series data in the user’s local time zone. Like in a graphing application. Even though PyPond does only business in UTC internally, this is possible. This can be changed on how you window and aggregate the data.

See the section on Aggregation in the main Pond Pipeline documentation [http://software.es.net/pond/#/pipeline]. Note how you specify the .windowBy() (.window_by() in PyPond) value in the pipeline chain. This can be a fixed value like 1d where it will aggregate the data into daily buckets. Fixed windows like that can only be rendered in UTC. Or it can be a non-fixed value like daily which will also aggregate the data into daily buckets, but the user can choose how to render the data in that case.

The default will be to render in UTC - any such choice will always default to UTC, the user will always need to set utc=False where appropriate. But when using a non-fixed window, the optional utc boolean can be set:

    kcol = (
        Pipeline()
        .from_source(timeseries)
        .window_by('daily', utc=False)
        .emit_on('eachEvent')
        .aggregate({'in': Functions.avg(), 'out': Functions.avg()})
        .to_keyed_collections()
    )





Then the aggregation key/buckets be daily averages in the local time zone.

There is also a trio of helper functions in the TimeSeries class that presents a higher level access to this functionality:

    TimeSeries.daily_rollup()
    TimeSeries.monthly_rollup()
    TimeSeries.yearly_rollup()





They all take a dict of a column name and an aggregation function as in the above example:

    TimeSeries.monthly_rollup({'in': Functions.avg(), 'out': Functions.avg()})





And the data will automatically be rendered in local time.


Conversion to local time

When the conversion covered in the previous section happens, the user has no control over what time zone it will be rendered to.  All conversions will automatically happen using the local time zone as determined by the tzlocal library:

    LOCAL_TZ = tzlocal.get_localzone()





This is primarily for parity with the JavaScript library which will be running browser-side and will be localizing as apropos. Moreover, the scope of this library is not to be a time handling swiss army knife.






Local time and the IndexedEvent class

The only Event class that explicitly takes a utc=False flag is the IndexedEvent class. It behaves somewhat differently than the Event and TimeRangeEvent classes which do not.  Rather than being initialized with an epoch ms timestamp or a datetime object they are initialized with strings of the following formats:

        The index string arg will may be of two forms:

        - 2015-07-14  (day)
        - 2015-07     (month)
        - 2015        (year)

        or:

        - 1d-278      (range, in n x days, hours, minutes or seconds)

        and return a TimeRange for that time. The TimeRange may be considered to be
        local time or UTC time, depending on the utc flag passed in.





A UTC conversion will still happen under the hood, just a little differently.

If an Index (which is the underlying time-handling structure to IndexedEvent) is initialized thusly:

    utc = Index('2015-07-14')





That is a daily index and is internally creating a range spanning that entire day. So looking at the internal timestamps yields this:

    print(utc.begin(), utc.end())
    2015-07-14 00:00:00+00:00 2015-07-14 23:59:59+00:00





But doing the same thing with utc=False (if you are in Pacific Time) yields this:

    local = Index('2015-07-14', utc=False)
    print(local.begin(), local.end())
    2015-07-14 07:00:00+00:00 2015-07-15 06:59:59+00:00





The time range is not internally held as spanning that day in the local time zone, it is converted and reflected in UTC.

Yet another example of why it is preferred to input and store the data in UTC and view it in a localized way.






Precision

Internal timestamps are precise down to the millisecond even though the python datetime object is precise down to the microsecond.  This is primarily for parity with the JavaScript library - the JS Date object is only accurate down to the millisecond. Unit testing showed that allowing microsecond accuracy exposed discrepancies between times that should have been “the same.”

It is perfectly fine to pass in python datetime objects that have microsecond accuracy, just be aware that it will be rounded to milliseconds automatically.







          

      

      

    

  

    
      
          
            
  
Data columns: field_spec and field_path

There are some points to note about the nomenclature that the pypond and pond code bases use to refer to the “columns of data” in the time series event objects. This TimeSeries:

DATA = dict(
    name="traffic",
    columns=["time", "value", "status"],
    points=[
        [1400425947000, 52, "ok"],
        [1400425948000, 18, "ok"],
        [1400425949000, 26, "fail"],
        [1400425950000, 93, "offline"]
    ]
)





contains two columns: value and status.

However this TimeSeries:

DATA_FLOW = dict(
    name="traffic",
    columns=["time", "direction"],
    points=[
        [1400425947000, {'in': 1, 'out': 2}],
        [1400425948000, {'in': 3, 'out': 4}],
        [1400425949000, {'in': 5, 'out': 6}],
        [1400425950000, {'in': 7, 'out': 8}]
    ]
)





contains only one column direction, but that column has two more columns - in and out - nested under it. In the following examples, these nested columns will be referred to as “deep paths.”

When specifying columns to the methods that set, retrieve and manipulate data, we use two argument types: field_spec and field_path. They are similar yet different enough to warrant this document.


field_path

A field_path refers to a single column in a series. Any method that takes a field_path as an argument only acts on one column at a time. The value passed to this argument can be either a string, a list or None.


String variant

When a string is passed, it can be one of the following formats:


	simple path - the name of a single “top level” column. In the DATA example above, this would be either value or status.

	deep path - the path pointing to a single nested columns with each “segment” of the path delimited with a period. In the DATA_FLOW example above, the incoming data could be retrieved with direction.in as the field_path.






List variant

When a list (or tuple) is passed as a field_path, each element in the iterable is a single segment of the path to a column. So to compare with the string examples:


	['value'] would be equivalent to the string value.

	['direction', 'in'] would be equivalent to the string direction.in.



This is particularly important to note because this behavior is different than passing a list to a field_spec arg.




None

If no field_path is specified (defaulting to None), then the default column value will be used.






field_spec

A field_spec refers to one or more columns in a series. When a method takes a field_spec, it may act on multiple columns in a TimeSeries. The value passed to this argument can be either a string, a list or None.


String variant

The string variant is essentially identical to the field_path string variant - it is a path to a single column of one of the following formats:


	simple path - the name of a single “top level” column. In the DATA example above, this would be either value or status.

	deep path - the path pointing to a single nested columns with each “segment” of the path delimited with a period. In the DATA_FLOW example above, the incoming data could be retrieved with direction.in as the field_path.






List variant

Passing a list (or tuple) to field_spec is different than the aforementioned behavior in that it is explicitly referring to one or more columns. Rather than each element being segments of a path, each element is a full path to a single column.

Using the previous examples:


	['in', 'out'] would act on both the in and out columns from the DATA example.

	['direction.in', 'direction.out'] - here each element is a fully formed “deep path” to the two data columns in the DATA_FLOW example.



The lists do not have to have more than one element: ['value'] == 'value'.

NOTE: accidentally passing this style of list to an arg that is actually a field_path will most likely result in an EventException being raised. Passing something like ['in', 'out'] as a field_path will attempt to retrieve the nested column in.out which probably doesn’t exist.




None

If no field_spec is specified (defaulting to None), then the default column value will be used.






field_spec_list

This is a less common variant of the field_spec. It is used in the case where the method is going to specifically act on multiple columns. Otherwise, it’s usage is identical to the list variant of field_spec.







          

      

      

    

  

    
      
          
            
  
Fill and other sanitizing methods

Real world data can have gaps, bad names, or occur at irregular intervals. The pypond toolkit contains some methods to adjust or sanitize a series of less than optimal data. As with all other mutation operations in pypond, these methods will return new Event objects, new Collections and new TimeSeries as apropos.


Fill

Data might contain missing or otherwise invalid values. TimeSeries.fill() can perform a variety of fill operations to smooth or make sure that the data can be processed in math operations without blowing up.

In pypond, a value is considered “invalid” if it is python None, a NaN (not a number) value, or an empty string.


Usage

The method prototype looks like this:

    def fill(self, field_spec=None, method='zero', limit=None)






	the field_spec argument is the same as it is in the rest of the code - a string or list of strings denoting “columns” in the data. It can point to.deep.values using the usual dot notation.

	the method arg denotes the fill method to use. Valid values are zero, pad and linear.

	the limit arg places a limit on the number of events that will be filled and returned in the new TimeSeries. The default is to fill all the events with no limit.



Complete sample usage could look like this:

    ts = TimeSeries(simple_missing_data)

    new_ts = ts.fill(field_spec=['direction.in', 'direction.out'],
                     method='linear', limit=6)








Fill methods

There are three fill options:


	zero - the default - will transform any invalid value to a zero.

	pad - replaces an invalid value with the the previous good value: [1, None, None, 3] becomes [1, 1, 1, 3].

	linear - interpolate the gaps based on the surrounding good values: [1, None, None, None, 3] becomes [1, 1.5, 2, 2.5, 3].



Neither pad or linear can fill the first value in a series if it is invalid, and they can’t start filling until good value has been seen: [None, None, None, 1, 2, 3] would remain unchanged. Similarly, linear can not fill the last value in a series.


The fill_limit arg

The optional arg fill_limit controls how many values will be filled before it gives up and starts returning the invalid data until a valid value is seen again.

There might be a situation where it makes sense to fill in a couple of missing values, but no sense to pad out long spans of missing data. This arg sets the limit of the number of missing values that will be filled - or in the case of linear attempt to be filled - before it just starts returning invalid data until the next valid value is seen.

So given fill_limit=2 the following values will be filled in the following ways:

Original:
    [1, None, None, None, 5, 6, 7]

Zero:
    [1, 0, 0, None, 5, 6, 7]

Pad:
    [1, 1, 1, None, 5, 6, 7]

Linear:
    [1, None, None, None, 5, 6, 7]





Using methods zero and pad the first two missing values are filled and the third is skipped. When using the linear method, nothing gets filled because a valid value has not been seen before the limit has been reached, so it just gives up and returns the missing data.

When filling multiple columns, the count is maintained on a per-column basis.  So given the following data:

    simple_missing_data = dict(
        name="traffic",
        columns=["time", "direction"],
        points=[
            [1400425947000, {'in': 1, 'out': None}],
            [1400425948000, {'in': None, 'out': None}],
            [1400425949000, {'in': None, 'out': None}],
            [1400425950000, {'in': 3, 'out': 8}],
            [1400425960000, {'in': None, 'out': None}],
            [1400425970000, {'in': None, 'out': 12}],
            [1400425980000, {'in': None, 'out': 13}],
            [1400425990000, {'in': 7, 'out': None}],
            [1400426000000, {'in': 8, 'out': None}],
            [1400426010000, {'in': 9, 'out': None}],
            [1400426020000, {'in': 10, 'out': None}],
        ]
    )





The in and out sub-columns will be counted and filled independently of each other.

If fill_limit is not set, no limits will be placed on the fill and all values will be filled as apropos to the selected method.




Constructing linear fill Pipeline chains

TimeSeries.fill() will be the common entry point for the Filler, but a Pipeline can be constructed as well. Even though the default behavior of TimeSeries.fill() applies to all fill methods, the linear fill logic is somewhat different than the zero and pad methods. Note the following points when creating your own method='linear' processing chain.


	When constructing a Pipeline to do a linear fill on multiple columns, chain them together like this rather than passing in a field_spec that is a list of columns:



    Pipeline()
    .from_source(ts)
    .fill(field_spec='direction.in', method='linear')
    .fill(field_spec='direction.out', method='linear')
    .to_keyed_collections()






	If a non numeric value (as determined by isinstance(val, numbers.Number)) is encountered when doing a linear fill, a warning will be issued and that column will not be processed.

	When using streaming input like Stream, it is a best practice to set a limit using the optional arg fill_limit. This will ensure events will continue being emitted if the data hits a long run of invalid values.

	When using an unbounded source, make sure to shut it down “cleanly” using .stop(). This will ensure .flush() is called so any unfilled cached events are emitted.










Rename

It might be necessary to rename the columns/data keys in the events in a TimeSeries. It is preferable to just give the columns/keys the desired names when the Event objects are being instantiated. This is because using TimeSeries.rename() will create all new Event objects and a new TimeSeries as well. But if that is necessary, use this method.


Usage

This method takes a python dict of strings in the format {'key': 'new_key'}. This example:

    ts = TimeSeries(TICKET_RANGE)

    renamed = ts.rename_columns({'title': 'event', 'esnet_ticket': 'ticket'})





will rename the existing column title to event, etc.




Limitations

Unlike other uses of a field_spec to point at a deep.nested.value in pypond, .rename() only allows renaming a ‘top level’ column/key. If the data payload looks like this:

    {'direction': {'in': 5, 'out': 7}}





The top level key direction can be renamed but the nested keys in and out can not.






Align

The align processor takes a TimeSeries of events that might come in with timestamps at uneven intervals and produces a new series of those points aligned on precise time window boundaries.  A series containing four events with following timestamps:

0:40
1:05
1:45
2:10





Given a window of 1m (one minute), a new series with two events at the following times will be produced:

1:00
2:00





Only a series of Event objects can be aligned. IndexedEvent objects are basically already aligned and it makes no sense in the case of a TimeRangeEvent.

It should also be noted that the emitted/aligned event will only contain the fields that alignment was requested on. Which is to say if you have two columns, in and out, and only request to align the in column, the out value will not be contained in the emitted event.


Usage

The full argument usage of the align method:

ts = TimeSeries(DATA_WITH_GAPS)
aligned = ts.align(field_spec='value', window='1m', method='linear', limit=2)






	field_spec - indicates which fields should be interpolated by the selected method. Typical usage of this arg type. If not supplied, then the default field value will be used.

	window - an integer and the usual s/m/h/d notation like 1m, 30s, 6h, etc. The emitted events will be emitted on the indicated window boundaries. Due to the nature of the interpolation, one would want to use a window close to the frequency of the events. It would make little sense to set a window of 5h on hourly data, etc.

	method - the interpolation method to be used: linear (the default) and hold.

	limit - sets a limit on the number of boundary interpolated events will be produced. If limit=2, window='1m' and two events come in at the following times:



0:45
3:15





That would normally produce events on three window boundaries 1:00, 2:00 and 3:00 and that exceeds the limit so those events will have None as a value instead of an interpolated value.




Fill methods


Linear

This is the default method. It interpolates differential values in Event objects on the window boundaries using a strategy like this:

[image: linear align]

The green points are the events that will be produced by the linear fill method by interpolating the raw points. It also shows why it makes little sense to use a window significantly larger than the frequency of the events. When the window is set too wide for the data, many of the points in the middle of the window will be disregarded since the generated points are interpolated from the last event in the previous window and the first one in the current window.




Hold

This is a much simpler method. It just fills the selected field(s) with the corresponding value from the previous event.








Rate (derivative)

This generates a new TimeSeries of TimeRangeEvent objects which contain the derivative between columns in two consecutive Event objects. The start and end time of the time range events correspond to the timestamps of the two events the calculation was derived from.

The primary use case for this was to generate rate data from monotonically increasing SNMP counter values like this:

    TimeSeries(RAW_COUNTERS).align(field_spec='in', window='30s').rate('in')





This would take the raw counter data, do a linear alignment on them on 30 second window boundaries, and then calculate the rates by calculating the derivative between the aligned boundaries.

However it is not necessary to align your events first, just calling .rate() will generate time range events with the derivative between the consecutive events.


Usage

The method prototype:

    def rate(self, field_spec=None, allow_negative=True)






	field_spec - indicates which fields should be interpolated by the selected method. Typical usage of this arg type. If not supplied, then the default field value will be used.

	allow_negative - if left defaulting to True, then if a negative derivative is calculated, that will be used as the value in the new event. If set to False a negative derivative will be set to None instead. There are certain use cases - like if a monotonically increasing counter gets reset - that this is the desired outcome.











          

      

      

    

  

    
      
          
            
  
Release notes

Notes about releases, API changes, etc.


0.4

First stable release with full feature parity with the Pond JS code base.




0.5


0.5.0

NOTE: key means “the specific timestamp, index or time range an event object exists at.”


Major changes:


	Event.merge() has been changed and is not backwards compatible with the 0.4 version. Previously it took a list of Event objects at the same key and returns a single, merged Event. Now it takes a list of Event objects that can be of differing keys and returns a list of Events where the events at the same key have their values merged into a single event. To wit: [e(1, {'a': 1}), e(1, {'b': 2}), e(2, {'a': 3}), e(2, {'b': 4})] -> [e(1, {'a': 1, 'b': 2}), e(2, {'a': 3, 'b': 4})]

	Event.combine() has been re-worked to accommodate this, but this is mostly for performance and should be transparent to the user.

	Event.avg() and Event.sum() (which are helper functions that use Event.combine()) now behave like Event.merge() and return a list of summed/averaged events, rather than a single event at one key.






Additions:


	Collection.at_key() retrieves all the events in a Collection at a specified key.

	Collection.dedup() removes duplicate (events at the same key) Event objects from a Collection.

	Collection.event_list_as_map() returns the Event objects in a Collection as a dict of list where the key is the key and the list contains the events at that key.

	Event.key() and Event.type() have been added but are mostly used internally. Have been added to all three event variants.

	Event.is_duplicate() compares two events and returns True if they are of the same time and exist at the same key. Can also be used to compare payload values as well with an optional flag.






Various:


	Added a boolean flag to allow TimeSeries.daily_rollup() .monthly_rollup() and .yearly_rollup() to render results in UTC rather than localtime. They default to rendering in localtime due to client-side concerns (like rendering a chart), but can now render in UTC since it is being used in server-side applications.

	Fixed a bug that impacted TimeSeries/Collection.at_time() when the first event should be returned.













          

      

      

    

  

    
      
          
            
  
Running the tests

Running the unit tests [https://github.com/esnet/pypond/tree/master/tests] will probably only be of interest to other developers. There is a test module that tests interoperability with the JavaScript library (pypond/tests/interop_test.py) that will require some additional setup.


	It will check to find the node executable somewhere in the path. If it is not found, those tests will fail.

	The Pond source [https://github.com/esnet/pond] will need to be checked out at the same level “alongside” of the pypond source and then execute npm install followed by npm run build at the root level of the pond source. (Running npm run build should be a formality, but is included just in case the pond/lib directory was not properly regenerated from pond/src)

	Execute pip install -r dev-requirements.txt and then run nosetests from either the source root or test directory (pypond/ or pypond/tests/). The pip command will also install pypond in “develop” mode.



That particular test sends the data on a round trip by:


	generating the wire format using the Python structures

	sends it to an external script run by node as an arg

	which reconstitutes the wire format as a JS structure

	then the JS structure is used to generate the wire format again

	wire format is returned to the calling unit test over stdout

	a new Python structure is created with the incoming wire format

	that structure is checked against the original data the first TimeSeries was created from.



All of the other tests are just standard-issue Python unit tests.

The tests [https://github.com/esnet/pypond/tree/master/tests] can also be referred to as a fairly complete set of examples as well.





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pypond	
       

     
       	
       	   
       pypond.bases	
       

     
       	
       	   
       pypond.collection	
       

     
       	
       	   
       pypond.event	
       

     
       	
       	   
       pypond.exceptions	
       

     
       	
       	   
       pypond.functions	
       

     
       	
       	   
       pypond.index	
       

     
       	
       	   
       pypond.indexed_event	
       

     
       	
       	   
       pypond.io	
       

     
       	
       	   
       pypond.io.input	
       

     
       	
       	   
       pypond.io.output	
       

     
       	
       	   
       pypond.pipeline	
       

     
       	
       	   
       pypond.processor	
       

     
       	
       	   
       pypond.processor.aggregator	
       

     
       	
       	   
       pypond.processor.align	
       

     
       	
       	   
       pypond.processor.base	
       

     
       	
       	   
       pypond.processor.collapser	
       

     
       	
       	   
       pypond.processor.converter	
       

     
       	
       	   
       pypond.processor.filler	
       

     
       	
       	   
       pypond.processor.filter	
       

     
       	
       	   
       pypond.processor.mapper	
       

     
       	
       	   
       pypond.processor.offset	
       

     
       	
       	   
       pypond.processor.rate	
       

     
       	
       	   
       pypond.processor.selector	
       

     
       	
       	   
       pypond.processor.taker	
       

     
       	
       	   
       pypond.range	
       

     
       	
       	   
       pypond.series	
       

     
       	
       	   
       pypond.timerange_event	
       

     
       	
       	   
       pypond.util	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z
 


_


  	
      	__eq__() (pypond.event.EventBase method)


      	__str__() (pypond.collection.Collection method)

      
        	(pypond.event.EventBase method)


        	(pypond.index.Index method)


        	(pypond.range.TimeRange method)


        	(pypond.series.TimeSeries method)


      


  





A


  	
      	add_event() (pypond.collection.Collection method)

      
        	(pypond.io.input.Stream method)


        	(pypond.io.output.CollectionOut method)


        	(pypond.io.output.Collector method)


        	(pypond.io.output.EventOut method)


        	(pypond.processor.aggregator.Aggregator method)


        	(pypond.processor.align.Align method)


        	(pypond.processor.collapser.Collapser method)


        	(pypond.processor.converter.Converter method)


        	(pypond.processor.filler.Filler method)


        	(pypond.processor.filter.Filter method)


        	(pypond.processor.mapper.Mapper method)


        	(pypond.processor.offset.Offset method)


        	(pypond.processor.rate.Rate method)


        	(pypond.processor.selector.Selector method)


        	(pypond.processor.taker.Taker method)


      


      	add_observer() (pypond.bases.Observable method)


      	add_prev_to_chain() (in module pypond.processor.base)


      	add_result() (pypond.pipeline.Pipeline method)


      	aggregate() (pypond.collection.Collection method)

      
        	(pypond.pipeline.Pipeline method)


        	(pypond.series.TimeSeries method)


      


      	Aggregator (class in pypond.processor.aggregator)


  

  	
      	Align (class in pypond.processor.align)


      	align() (pypond.pipeline.Pipeline method)

      
        	(pypond.series.TimeSeries method)


      


      	as_events() (pypond.pipeline.Pipeline method)


      	as_indexed_events() (pypond.pipeline.Pipeline method)


      	as_string() (pypond.index.Index method)


      	as_time_range_events() (pypond.pipeline.Pipeline method)


      	as_timerange() (pypond.index.Index method)


      	at() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


      	at_first() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


      	at_key() (pypond.collection.Collection method)


      	at_last() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


      	at_time() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


      	avg() (pypond.collection.Collection method)

      
        	(pypond.event.Event static method)


        	(pypond.functions.Functions static method)


        	(pypond.series.TimeSeries method)


      


      	aware_dt_from_args() (in module pypond.util)


      	aware_utcnow() (in module pypond.util)


      	awareness_check() (pypond.range.TimeRangeBase static method)


  





B


  	
      	begin() (pypond.event.Event method)

      
        	(pypond.event.EventBase method)


        	(pypond.index.Index method)


        	(pypond.indexed_event.IndexedEvent method)


        	(pypond.range.TimeRange method)


        	(pypond.series.TimeSeries method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


  

  	
      	begin_timestamp() (pypond.series.TimeSeries method)


      	bisect() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


      	Bounded (class in pypond.io.input)


      	build_metadata() (pypond.series.TimeSeries static method)


  





C


  	
      	Capsule (class in pypond.util)


      	chain() (pypond.processor.base.Processor method)


      	clean() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


      	clear_group_by() (pypond.pipeline.Pipeline method)


      	clear_results() (pypond.pipeline.Pipeline method)


      	clear_window() (pypond.pipeline.Pipeline method)


      	clone() (pypond.processor.aggregator.Aggregator method)

      
        	(pypond.processor.align.Align method)


        	(pypond.processor.collapser.Collapser method)


        	(pypond.processor.converter.Converter method)


        	(pypond.processor.filler.Filler method)


        	(pypond.processor.filter.Filter method)


        	(pypond.processor.mapper.Mapper method)


        	(pypond.processor.offset.Offset method)


        	(pypond.processor.rate.Rate method)


        	(pypond.processor.selector.Selector method)


        	(pypond.processor.taker.Taker method)


      


      	collapse() (pypond.collection.Collection method)

      
        	(pypond.event.Event method)


        	(pypond.pipeline.Pipeline method)


        	(pypond.series.TimeSeries method)


      


  

  	
      	Collapser (class in pypond.processor.collapser)


      	collect_by_fixed_window() (pypond.series.TimeSeries method)


      	Collection (class in pypond.collection)


      	collection() (pypond.series.TimeSeries method)


      	CollectionException


      	CollectionOut (class in pypond.io.output)


      	CollectionWarning


      	Collector (class in pypond.io.output)


      	columns() (pypond.series.TimeSeries method)


      	combine() (pypond.event.Event static method)


      	contains() (pypond.range.TimeRange method)


      	convert_event() (pypond.processor.converter.Converter method)


      	convert_indexed_event() (pypond.processor.converter.Converter method)


      	convert_time_range_event() (pypond.processor.converter.Converter method)


      	Converter (class in pypond.processor.converter)


      	count() (pypond.collection.Collection method)

      
        	(pypond.functions.Functions static method)


        	(pypond.pipeline.Pipeline method)


        	(pypond.series.TimeSeries method)


      


      	crop() (pypond.series.TimeSeries method)


  





D


  	
      	daily_rollup() (pypond.series.TimeSeries method)


      	data() (pypond.event.EventBase method)


      	data_from_arg() (pypond.event.EventBase static method)


      	dedup() (pypond.collection.Collection method)


      	default() (pypond.util.ObjectEncoder method)


  

  	
      	default_callback() (in module pypond.pipeline)


      	difference() (pypond.functions.Functions static method)


      	disjoint() (pypond.range.TimeRange method)


      	dt_from_ms() (in module pypond.util)


      	dt_is_aware() (in module pypond.util)


      	duration() (pypond.range.TimeRange method)


  





E


  	
      	emit() (pypond.bases.Observable method)


      	emit_collections() (pypond.io.output.Collector method)


      	emit_on() (pypond.pipeline.Pipeline method)


      	end() (pypond.event.Event method)

      
        	(pypond.event.EventBase method)


        	(pypond.index.Index method)


        	(pypond.indexed_event.IndexedEvent method)


        	(pypond.range.TimeRange method)


        	(pypond.series.TimeSeries method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


      	end_timestamp() (pypond.series.TimeSeries method)


      	equal() (pypond.collection.Collection static method)

      
        	(pypond.series.TimeSeries static method)


      


  

  	
      	equals() (pypond.range.TimeRange method)


      	Event (class in pypond.event)


      	event_list() (pypond.collection.Collection method)


      	event_list_as_list() (pypond.collection.Collection method)


      	event_list_as_map() (pypond.collection.Collection method)


      	event_type_map (pypond.series.TimeSeries attribute), [1]


      	EventBase (class in pypond.event)


      	EventException


      	EventOut (class in pypond.io.output)


      	events() (pypond.collection.Collection method)

      
        	(pypond.io.input.Stream method)


        	(pypond.series.TimeSeries method)


      


      	EventWarning


      	extents() (pypond.range.TimeRange method)


  





F


  	
      	f_check() (in module pypond.functions)


      	fill() (pypond.pipeline.Pipeline method)

      
        	(pypond.series.TimeSeries method)


      


      	Filler (class in pypond.processor.filler)


      	Filter (class in pypond.processor.filter)


      	filter() (pypond.collection.Collection method)

      
        	(pypond.pipeline.Pipeline method)


      


      	FilterException


      	Filters (class in pypond.functions)


      	FilterWarning


      	first() (pypond.collection.Collection method)

      
        	(pypond.functions.Functions static method)


        	(pypond.pipeline.Pipeline method)


      


  

  	
      	fixed_window_rollup() (pypond.series.TimeSeries method)


      	flush() (pypond.bases.Observable method)

      
        	(pypond.io.output.CollectionOut method)


        	(pypond.io.output.EventOut method)


        	(pypond.processor.aggregator.Aggregator method)


        	(pypond.processor.filler.Filler method)


        	(pypond.processor.taker.Taker method)


      


      	flush_collections() (pypond.io.output.Collector method)


      	format_dt() (in module pypond.util)


      	from_source() (pypond.pipeline.Pipeline method)


      	FunctionException


      	Functions (class in pypond.functions)


      	FunctionWarning


  





G


  	
      	generate_paths() (in module pypond.util)


      	get() (pypond.event.EventBase method)


      	get_daily_index_string() (pypond.index.Index static method)


      	get_emit_on() (pypond.pipeline.Pipeline method)


      	get_group_by() (pypond.pipeline.Pipeline method)


      	get_index_string() (pypond.index.Index static method)


  

  	
      	get_index_string_list() (pypond.index.Index static method)


      	get_monthly_index_string() (pypond.index.Index static method)


      	get_utc() (pypond.pipeline.Pipeline method)


      	get_window_duration() (pypond.pipeline.Pipeline method)


      	get_window_type() (pypond.pipeline.Pipeline method)


      	get_yearly_index_string() (pypond.index.Index static method)


      	group_by() (pypond.pipeline.Pipeline method)


  





H


  	
      	has_observers() (pypond.bases.Observable method)


      	hourly_rollup() (pypond.series.TimeSeries method)


      	humanize() (pypond.range.TimeRange method)


      	humanize_dt() (in module pypond.util)


  

  	
      	humanize_dt_ago() (in module pypond.util)


      	humanize_duration() (in module pypond.util)

      
        	(pypond.range.TimeRange method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


  





I


  	
      	ignore_missing() (pypond.functions.Filters static method)


      	Index (class in pypond.index)


      	index() (pypond.indexed_event.IndexedEvent method)

      
        	(pypond.series.TimeSeries method)


      


      	index_as_range() (pypond.series.TimeSeries method)


      	index_as_string() (pypond.indexed_event.IndexedEvent method)

      
        	(pypond.series.TimeSeries method)


      


      	index_from_args() (pypond.event.EventBase static method)


      	IndexedEvent (class in pypond.indexed_event)


      	IndexException


      	IndexWarning


  

  	
      	input() (pypond.pipeline.Pipeline method)


      	intersection() (pypond.range.TimeRange method)


      	is_chronological() (pypond.collection.Collection method)


      	is_duplicate() (pypond.event.Event static method)


      	is_function() (in module pypond.util)


      	is_nan() (in module pypond.util)


      	is_pipeline() (in module pypond.util)


      	is_pmap() (in module pypond.util)


      	is_pvector() (in module pypond.util)


      	is_utc() (pypond.series.TimeSeries method)


      	is_valid() (in module pypond.util)


      	is_valid_value() (pypond.event.Event static method)


  





K


  	
      	keep() (pypond.functions.Functions static method)


      	keep_missing() (pypond.functions.Filters static method)


  

  	
      	key() (pypond.event.Event method)

      
        	(pypond.indexed_event.IndexedEvent method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


  





L


  	
      	last() (pypond.collection.Collection method)

      
        	(pypond.functions.Functions static method)


        	(pypond.pipeline.Pipeline method)


      


      	last_day() (pypond.range.TimeRange static method)


      	last_month() (pypond.range.TimeRange static method)


  

  	
      	last_ninety_days() (pypond.range.TimeRange static method)


      	last_seven_days() (pypond.range.TimeRange static method)


      	last_thirty_days() (pypond.range.TimeRange static method)


      	localtime_from_ms() (in module pypond.util)


      	localtime_info_from_utc() (in module pypond.util)


  





M


  	
      	map() (pypond.collection.Collection method)

      
        	(pypond.event.Event static method)


        	(pypond.pipeline.Pipeline method)


        	(pypond.series.TimeSeries method)


      


      	map_reduce() (pypond.event.Event static method)


      	Mapper (class in pypond.processor.mapper)


      	max() (pypond.collection.Collection method)

      
        	(pypond.functions.Functions static method)


        	(pypond.series.TimeSeries method)


      


      	mean() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


  

  	
      	median() (pypond.collection.Collection method)

      
        	(pypond.functions.Functions static method)


        	(pypond.series.TimeSeries method)


      


      	merge() (pypond.event.Event static method)


      	meta() (pypond.series.TimeSeries method)


      	min() (pypond.collection.Collection method)

      
        	(pypond.functions.Functions static method)


        	(pypond.series.TimeSeries method)


      


      	mode() (pypond.pipeline.Pipeline method)


      	monthdelta() (in module pypond.util)


      	monthly_rollup() (pypond.series.TimeSeries method)


      	ms_from_dt() (in module pypond.util)


  





N


  	
      	name() (pypond.series.TimeSeries method)


      	nested_get() (in module pypond.util)


  

  	
      	nested_set() (in module pypond.util)


      	none_if_empty() (pypond.functions.Filters static method)


  





O


  	
      	ObjectEncoder (class in pypond.util)


      	Observable (class in pypond.bases)


      	Offset (class in pypond.processor.offset)


      	offset_by() (pypond.pipeline.Pipeline method)


  

  	
      	on_emit() (pypond.io.input.Bounded method)

      
        	(pypond.io.output.CollectionOut method)


        	(pypond.io.output.EventOut method)


      


      	Options (class in pypond.util)


      	overlaps() (pypond.range.TimeRange method)


  





P


  	
      	percentile() (pypond.collection.Collection method)

      
        	(pypond.functions.Functions static method)


        	(pypond.series.TimeSeries method)


      


      	Pipeline (class in pypond.pipeline)


      	pipeline() (pypond.processor.base.Processor method)

      
        	(pypond.series.TimeSeries method)


      


      	PipelineException


      	PipelineIn (class in pypond.io.input)


      	PipelineIOException


      	PipelineIOWarning


      	PipelineOut (class in pypond.io.output)


      	PipelineWarning


      	prev() (pypond.processor.base.Processor method)


      	Processor (class in pypond.processor.base)


      	ProcessorException


      	ProcessorWarning


      	propogate_missing() (pypond.functions.Filters static method)


      	pypond (module)


      	pypond.bases (module)


      	pypond.collection (module)


      	pypond.event (module)


      	pypond.exceptions (module)


      	pypond.functions (module)


  

  	
      	pypond.index (module)


      	pypond.indexed_event (module)


      	pypond.io (module)


      	pypond.io.input (module)


      	pypond.io.output (module)


      	pypond.pipeline (module)


      	pypond.processor (module)


      	pypond.processor.aggregator (module)


      	pypond.processor.align (module)


      	pypond.processor.base (module)


      	pypond.processor.collapser (module)


      	pypond.processor.converter (module)


      	pypond.processor.filler (module)


      	pypond.processor.filter (module)


      	pypond.processor.mapper (module)


      	pypond.processor.offset (module)


      	pypond.processor.rate (module)


      	pypond.processor.selector (module)


      	pypond.processor.taker (module)


      	pypond.range (module)


      	pypond.series (module)


      	pypond.timerange_event (module)


      	pypond.util (module)


      	PypondBase (class in pypond.bases)


  





Q


  	
      	quantile() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


  





R


  	
      	range() (pypond.collection.Collection method)

      
        	(pypond.range.TimeRange method)


        	(pypond.series.TimeSeries method)


      


      	range_from_index_string() (pypond.index.Index method)


      	Rate (class in pypond.processor.rate)


      	rate() (pypond.pipeline.Pipeline method)

      
        	(pypond.series.TimeSeries method)


      


  

  	
      	reduce() (pypond.event.Event static method)


      	relative_string() (pypond.range.TimeRange method)


      	rename_columns() (pypond.series.TimeSeries method)


      	results_done() (pypond.pipeline.Pipeline method)


      	Runner (class in pypond.pipeline)


  





S


  	
      	same() (pypond.collection.Collection static method)

      
        	(pypond.event.Event static method)


        	(pypond.series.TimeSeries static method)


      


      	sanitize_dt() (in module pypond.util)


      	sanitize_list_input() (pypond.range.TimeRangeBase static method)


      	select() (pypond.pipeline.Pipeline method)

      
        	(pypond.series.TimeSeries method)


      


      	Selector (class in pypond.processor.selector)


      	selector() (pypond.event.Event static method)


      	set_begin() (pypond.range.TimeRange method)


      	set_collection() (pypond.series.TimeSeries method)


      	set_data() (pypond.event.Event method)

      
        	(pypond.indexed_event.IndexedEvent method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


      	set_end() (pypond.range.TimeRange method)


      	set_events() (pypond.collection.Collection method)


      	set_meta() (pypond.series.TimeSeries method)


      	set_name() (pypond.series.TimeSeries method)


      	setup_log() (in module pypond.bases)


      	size() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


  

  	
      	size_valid() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


      	slice() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


      	sort() (pypond.collection.Collection method)


      	sort_by_time() (pypond.collection.Collection method)


      	start() (pypond.io.input.Bounded method)

      
        	(pypond.io.input.Stream method)


        	(pypond.pipeline.Runner method)


      


      	stddev() (pypond.functions.Functions static method)


      	stdev() (pypond.collection.Collection method)

      
        	(pypond.series.TimeSeries method)


      


      	stop() (pypond.io.input.Bounded method)

      
        	(pypond.io.input.Stream method)


      


      	Stream (class in pypond.io.input)


      	stringify() (pypond.event.EventBase method)


      	sum() (pypond.collection.Collection method)

      
        	(pypond.event.Event static method)


        	(pypond.functions.Functions static method)


        	(pypond.series.TimeSeries method)


      


  





T


  	
      	take() (pypond.pipeline.Pipeline method)


      	Taker (class in pypond.processor.taker)


      	TimeRange (class in pypond.range)


      	timerange() (pypond.indexed_event.IndexedEvent method)

      
        	(pypond.series.TimeSeries method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


      	timerange_as_local_string() (pypond.indexed_event.IndexedEvent method)

      
        	(pypond.timerange_event.TimeRangeEvent method)


      


      	timerange_as_utc_string() (pypond.indexed_event.IndexedEvent method)

      
        	(pypond.timerange_event.TimeRangeEvent method)


      


      	timerange_from_arg() (pypond.event.EventBase static method)


      	TimeRangeBase (class in pypond.range)


      	TimeRangeEvent (class in pypond.timerange_event)


      	TimeRangeException


      	TimeRangeWarning


      	TimeSeries (class in pypond.series)


      	timeseries_list_merge() (pypond.series.TimeSeries static method)


      	timeseries_list_reduce() (pypond.series.TimeSeries static method)


      	timeseries_list_sum() (pypond.series.TimeSeries static method)


      	TimeSeriesException


      	TimeSeriesWarning


      	timestamp() (pypond.event.Event method)

      
        	(pypond.event.EventBase method)


        	(pypond.indexed_event.IndexedEvent method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


      	timestamp_as_local_string() (pypond.event.Event method)


      	timestamp_as_utc_string() (pypond.event.Event method)


      	timestamp_from_arg() (pypond.event.EventBase static method)


  

  	
      	to() (pypond.pipeline.Pipeline method)


      	to_dict() (pypond.util.Options method)


      	to_event_list() (pypond.pipeline.Pipeline method)


      	to_json() (pypond.collection.Collection method)

      
        	(pypond.event.Event method)


        	(pypond.event.EventBase method)


        	(pypond.index.Index method)


        	(pypond.indexed_event.IndexedEvent method)


        	(pypond.range.TimeRange method)


        	(pypond.series.TimeSeries method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


      	to_keyed_collections() (pypond.pipeline.Pipeline method)


      	to_local_string() (pypond.range.TimeRange method)


      	to_milliseconds() (in module pypond.util)


      	to_nice_string() (pypond.index.Index method)


      	to_point() (pypond.event.Event method)

      
        	(pypond.indexed_event.IndexedEvent method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


      	to_string() (pypond.collection.Collection method)

      
        	(pypond.event.EventBase method)


        	(pypond.index.Index method)


        	(pypond.range.TimeRange method)


        	(pypond.series.TimeSeries method)


      


      	to_utc_string() (pypond.range.TimeRange method)


      	ts (pypond.event.EventBase attribute)


      	type() (pypond.collection.Collection method)

      
        	(pypond.event.Event method)


        	(pypond.indexed_event.IndexedEvent method)


        	(pypond.timerange_event.TimeRangeEvent method)


      


  





U


  	
      	unique_id() (in module pypond.util)


      	utc (pypond.index.Index attribute)


  

  	
      	UtilityException


      	UtilityWarning


  





V


  	
      	validate_range() (pypond.range.TimeRangeBase static method)


  

  	
      	value() (pypond.event.EventBase method)


  





W


  	
      	window_by() (pypond.pipeline.Pipeline method)


      	window_duration() (pypond.index.Index static method)


  

  	
      	window_position_from_date() (pypond.index.Index static method)


      	within() (pypond.range.TimeRange method)


  





Y


  	
      	yearly_rollup() (pypond.series.TimeSeries method)


  





Z


  	
      	zero_missing() (pypond.functions.Filters static method)


  







          

      

      

    

  

    
      
          
            
  
pypond



	pypond package
	Subpackages
	pypond.io package
	Submodules

	pypond.io.input module

	pypond.io.output module

	Module contents





	pypond.processor package
	Submodules

	pypond.processor.aggregator module

	pypond.processor.align module

	pypond.processor.base module

	pypond.processor.collapser module

	pypond.processor.converter module

	pypond.processor.filler module

	pypond.processor.filter module

	pypond.processor.mapper module

	pypond.processor.offset module

	pypond.processor.rate module

	pypond.processor.selector module

	pypond.processor.taker module

	Module contents









	Submodules

	pypond.bases module

	pypond.collection module

	pypond.event module

	pypond.exceptions module

	pypond.functions module

	pypond.index module

	pypond.indexed_event module

	pypond.pipeline module

	pypond.range module

	pypond.series module

	pypond.timerange_event module

	pypond.util module

	Module contents













          

      

      

    

  

    
      
          
            
  
pypond package


Subpackages



	pypond.io package
	Submodules

	pypond.io.input module

	pypond.io.output module

	Module contents





	pypond.processor package
	Submodules

	pypond.processor.aggregator module

	pypond.processor.align module

	pypond.processor.base module

	pypond.processor.collapser module

	pypond.processor.converter module

	pypond.processor.filler module

	pypond.processor.filter module

	pypond.processor.mapper module

	pypond.processor.offset module

	pypond.processor.rate module

	pypond.processor.selector module

	pypond.processor.taker module

	Module contents












Submodules




pypond.bases module

Common base classes and mixins.


	
class pypond.bases.Observable

	Bases: pypond.bases.PypondBase

Base class for objects in the processing chain which
need other object to listen to them. It provides a basic
interface to define the relationships and to emit events
to the interested observers.


	
add_observer(observer)

	add an observer if it does not already exist.






	
emit(event)

	add event to observers.






	
flush()

	flush observers.






	
has_observers()

	does the object have observers?










	
class pypond.bases.PypondBase

	Bases: object

Universal base class. Used to provide common functionality (logging, etc)
to all the other classes.






	
pypond.bases.setup_log(log_path=None)

	Usage:
_log(‘main.start’, ‘happy simple log event’)
_log(‘launch’, ‘more={0}, complex={1} log=event’.format(100, 200))








pypond.collection module

Implementation of Pond Collection class.


	
class pypond.collection.Collection(instance_or_list=None, copy_events=True)

	Bases: pypond.io.input.Bounded

A collection is a list of Events. You can construct one out of either
another collection, or a list of Events. You can addEvent() to a collection
and a new collection will be returned.

Basic operations on the list of events are also possible. You
can iterate over the collection with a for..of loop, get the size()
of the collection and access a specific element with at().

Initialize from copy, lists, etc.

instance_or_list arg can be:


	a Collection object (copy ctor)

	a python list

	a pyrsistent.pvector



The list and pvector will contain Events.





	Parameters:	
	instance_or_list (list, Collection, pyrsistent.pvector) – A collection object to copy or a list of Event objects

	copy_events (bool, optional) – Copy event list when using copy constructor, otherwise the
new object has an emtpy event list.










	
__str__()

	call to_string()

to_string() is already being tested so skip coverage.





	Returns:	String representation of the object.


	Return type:	str










	
add_event(event)

	Add an event to the payload and return a new Collection object.





	Parameters:	event (Event) – Event object to add to collection.


	Returns:	New collection with the event added to it.


	Return type:	Collection










	
aggregate(func, field_path=None)

	Aggregates the events down using a user defined function to
do the reduction. Only a single column can be aggregated on
so this takes a field_path, NOT a field_spec.

This is essentially a wrapper around map/reduce, constraining
it to a single column and returning the value, not the dict
from map().





	Parameters:	
	func (function) – Function to pass to map reduce to aggregate.

	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.








	Returns:	Returns the aggregated value, so it depends on what kind
of data are being handled/aggregation being done.




	Return type:	various












	
at(pos)

	Returns an item in the collection by its index position.

Creates a new object via copy ctor.





	Parameters:	pos (int) – Index of the event to be retrieved.


	Returns:	A new Event object of the event at index pos


	Return type:	Event


	Raises:	CollectionException – Raised if there is an index error.










	
at_first()

	Retrieve the first item in this collection.





	Returns:	An event instance.


	Return type:	Event










	
at_key(searchkey)

	Returns a list of events in the Collection which have
the exact key (time, timerange or index) as the key specified
by ‘at’. Note that this is an O(n) search for the time specified,
since collections are an unordered bag of events.





	Parameters:	key (datetime, str, TimeRange) – The key of the event


	Returns:	List of all events at that key.


	Return type:	list










	
at_last()

	Return the last event item in this collection.





	Returns:	An event instance.


	Return type:	Event










	
at_time(time)

	Return an item by time. Primarily a utility method that sits in
front of bisect() and fetches using at().

If you have events at 12:00 and 12:02 and you make the query
at 12:01, the one at 12:00 will be returned. Otherwise it will
return the exact match.





	Parameters:	time (datetime.datetime) – Datetime object >= to the event to be returned. Must
be an aware UTC datetime object.


	Returns:	Returns a new Event instance via at()


	Return type:	Event










	
avg(field_path=None, filter_func=None)

	Get avg





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Average value.




	Return type:	int or float












	
bisect(dtime, b=0)

	Finds the index that is just less than the time t supplied.
In other words every event at the returned index or less
has a time before the supplied t, and every sample after the
index has a time later than the supplied t.

Optionally supply a begin index to start searching from.



	
	dtime - python datetime object to bisect collection with

	will be made into an aware datetime in UTC.





	b - position to start






Returns index that is the greatest but still below t - see docstring
for at_time()





	Parameters:	
	dtime (datetime.datetime) – Datetime object >= to the event to be returned. Must
be an aware UTC datetime object.

	b (int, optional) – Array index to start searching from






	Returns:	The index of the searched-for event




	Return type:	int




	Raises:	CollectionException – Raised if given a naive or non-UTC dtime












	
clean(field_path=None)

	Returns a new Collection by testing the fieldSpec
values for being valid (not NaN, null or undefined).
The resulting Collection will be clean for that fieldSpec.





	Parameters:	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.




	Returns:	New collection containing only “clean” events.


	Return type:	Collection










	
collapse(field_spec_list, name, reducer, append=True)

	Takes a fieldSpecList (list of column names) and collapses
them to a new column which is the reduction of the matched columns
in the fieldSpecList.





	Parameters:	
	field_spec_list (list) – List of columns to collapse. If you need to retrieve deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].

	name (str) – Name of new column containing collapsed data.

	reducer (function) – Function to pass to reducer.

	append (bool, optional) – Append collapsed column to existing data or make new events with
only that column.






	Returns:	New collection containing the collapsed data.




	Return type:	Collection












	
count()

	Get count - calls size()





	Returns:	Num events in the collection.


	Return type:	int










	
dedup()

	Remove duplicates from the Collection. If duplicates
exist in the collection with the same key but with different
values, the later event values will be used.





	Returns:	A new collection w/out duplicates.


	Return type:	Collection










	
static equal(coll1, coll2)

	Test to see if instances are the same instance.





	Parameters:	
	coll1 (Collection) – A collection.

	coll2 (Collection) – Another collection.






	Returns:	True if same instance.




	Return type:	bool












	
event_list()

	Returns the raw Immutable event list.





	Returns:	Raw immutable event list.


	Return type:	pyrsistent.pvector










	
event_list_as_list()

	return a python list of the event list.





	Returns:	Thawed version of internal immutable data structure.


	Return type:	list










	
event_list_as_map()

	Return the events in the collection as a dict of lists where
the key is the timestamp, index or timerange and the value
is an array of events with that key.





	Returns:	Description


	Return type:	TYPE










	
events()

	Generator to allow for..of loops over series.events()

for i in series.events():
    do_stuff(i)









	Returns:	An iterator to loop over the events.


	Return type:	iterator










	
filter(func)

	Filter the collection’s event list with the supplied function.
The function will be passed each of the Event objects and return
a boolean value. If True, then it will be included in the filter.

def is_even(event):
    return bool(event.get('some_value') % 2 == 0)





Would produce a new collection where ‘some_value’ is only
even numbers.





	Parameters:	func (function) – Function to filter with.


	Returns:	New collection containing filtered events.


	Return type:	Collection










	
first(field_path=None, filter_func=None)

	Get first value in the collection for the fspec





	Parameters:	
	field_spec (str, list, tuple, None) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.  If None, all columns
will be operated on.

	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Type varies depending on underlying data




	Return type:	depends on data












	
is_chronological()

	Checks that the events in this collection are in chronological
order.





	Returns:	True if events are in chronologcal order.


	Return type:	bool










	
last(field_path=None, filter_func=None)

	Get last value in the collection for the fspec





	Parameters:	
	field_spec (str, list, tuple, None) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.  If None, all columns
will be operated on.

	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Type varies depending on underlying data




	Return type:	depends on data












	
map(func)

	Map function. Apply function to the collection events
and return a new Collection from the resulting events. Function
must creat a new Event* instance.

def in_only(event):
    # make new events wtin only data value "in".
    return Event(event.timestamp(), {'in': event.get('in')})









	Parameters:	func (function) – Mapper function


	Returns:	New collection containing mapped events.


	Return type:	Collection










	
max(field_path=None, filter_func=None)

	Get max





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Maximum value.




	Return type:	int or float












	
mean(field_path=None, filter_func=None)

	Get mean





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Mean value (grrr!).




	Return type:	int or float












	
median(field_path=None, filter_func=None)

	Get median





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Median value.




	Return type:	int or float












	
min(field_path=None, filter_func=None)

	Get min





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Minimum value.




	Return type:	int or float












	
percentile(perc, field_path, method='linear', filter_func=None)

	Gets percentile perc within the Collection. This works the same
way as numpy.





	Parameters:	
	perc (int) – The percentile (should be between 0 and 100)

	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	method (str, optional) – Specifies the interpolation method to use when the desired
percentile lies between two data points. Options are:

linear: i + (j - i) * fraction, where fraction is the fractional
part of the index surrounded by i and j.

lower: i

higher: j

nearest: i or j whichever is nearest

midpoint: (i + j) / 2








	Returns:	The percentile.




	Return type:	int or float












	
quantile(num, field_path=None, method='linear')

	Gets num quantiles within the Collection





	Parameters:	
	num (Number of quantiles to divide the Collection into.) – Description

	field_path (None, optional) – The field to return as the quantile. If not set, defaults
to ‘value.’

	method (str, optional) – Specifies the interpolation method to use when the desired
percentile lies between two data points. Options are:

linear: i + (j - i) * fraction, where fraction is the fractional
part of the index surrounded by i and j.

lower: i

higher: j

nearest: i or j whichever is nearest

midpoint: (i + j) / 2








	Returns:	An array of quantiles




	Return type:	list












	
range()

	From the range of times, or Indexes within the TimeSeries, return
the extents of the Collection/TimeSeries as a TimeRange.





	Returns:	Extents as time range.


	Return type:	TimeRange










	
static same(coll1, coll2)

	Test to see if the collections have the same values.





	Parameters:	
	coll1 (Collection) – A collection.

	coll2 (Collection) – Another collection.






	Returns:	True if same values.




	Return type:	bool












	
set_events(events)

	Create a new Collection from this one and set the internal
list of events





	Parameters:	events (list or pyrsistent.pvector) – A list of events


	Returns:	Returns a new collection with the event list set to the
everts arg


	Return type:	Collection


	Raises:	CollectionException – Raised if wrong arg type.










	
size()

	Number of items in collection.





	Returns:	Number of items in collection


	Return type:	int










	
size_valid(field_path=None)

	Returns the number of valid items in this collection.

Uses the fieldSpec to look up values in all events.
It then counts the number that are considered valid,
i.e. are not NaN, undefined or null.





	Parameters:	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.




	Returns:	Number of valid <field_path> values in all of the Events.


	Return type:	int










	
slice(begin, end)

	Perform a slice of events within the Collection, returns a new
Collection representing a portion of this TimeSeries from begin up to
but not including end. Uses typical python [slice:syntax].





	Parameters:	
	begin (int) – Slice begin.

	end (int) – Slice end.






	Returns:	New collection with sliced payload.




	Return type:	Collection












	
sort(field_path)

	Sorts the Collection using the value referenced by field_path.





	Parameters:	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.




	Returns:	New collection of sorted values.


	Return type:	Collection










	
sort_by_time()

	Return a new instance of this collection after making sure
that all of the events are sorted by timestamp.





	Returns:	A copy of this collection with the events chronologically
sorted.


	Return type:	Collection










	
stdev(field_path=None, filter_func=None)

	Get std dev





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Standard deviation.




	Return type:	int or float












	
sum(field_path=None, filter_func=None)

	Get sum





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Summed value.




	Return type:	int or float












	
to_json()

	Returns the collection as json object.

This is actually like json.loads(s) - produces the
actual vanilla data structure.





	Returns:	A thawed list of Event objects.


	Return type:	list










	
to_string()

	Retruns the collection as a string, useful for serialization.

In JS land, this is synonymous with __str__ or __unicode__

Use custom object encoder because this is a list of Event* objects.





	Returns:	String representation of this object.


	Return type:	str










	
type()

	Event object type.

The class of the type of events in this collection.





	Returns:	The class (not instance) of the type of events.


	Return type:	Event
















pypond.event module

Implementation of the Pond Event classes.

http://software.es.net/pond/#/events


	
class pypond.event.Event(instance_or_time, data=None)

	Bases: pypond.event.EventBase

A generic event. This represents a data object at a single timestamp,
supplied at initialization.

The timestamp may be a python date object, datetime object, or
ms since UNIX epoch. It is stored internally as a datetime object.

The data may be any type.

Asking the Event object for the timestamp returns an integer copy
of the number of ms since the UNIX epoch. There’s no method on
the Event object to mutate the Event timestamp after it is created.

The creation of an Event is done by combining two parts:
the timestamp (or time range, or Index...) and the data.

To construct you specify the timestamp as either:


	a python date or datetime object

	millisecond timestamp: the number of ms since the UNIX epoch



To specify the data you can supply either:


	a python dict

	a pyrsistent.PMap created with pyrsistent.freeze(), or

	a simple type such as an integer. In the case of the simple type
this is a shorthand for supplying {“value”: v}.



If supplying a PMap for either of the args (rather than supplying
a python dict and letting the Event class handle it which is
preferred), create it with freeze() and not pmap(). This is because
any nested dicts must similarly be made immutable and pmap() will
only freeze the “outer” dict.





	Parameters:	
	instance_or_time (Event, pyrsistent.PMap, int, datetime.datetime) – An event for copy constructor, a fully formed and formatted
immutable data payload, or an int (epoch ms) or a
datetime.datetime object to create a timestamp from.

	data (None, optional) – Could be dict/PMap/int/float/str to use for data payload.










	
static avg(events, field_spec=None, filter_func=None)

	combine() called with a averaging function as a reducer.





	Parameters:	
	events (list) – A list of Event objects

	field_spec (list, str, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.  If None, all columns
will be operated on.

	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	A list containing the averaged events.




	Return type:	list












	
begin()

	The begin time of this Event, which will be just the timestamp.





	Returns:	Datetime object


	Return type:	datetime.datetime










	
collapse(field_spec_list, name, reducer, append=False)

	Collapses this event’s columns, represented by the fieldSpecList
into a single column. The collapsing itself is done with the reducer
function. Optionally the collapsed column could be appended to the
existing columns, or replace them (the default).





	Parameters:	
	field_spec_list (list) – List of columns to collapse. If you need to retrieve deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].

	name (str) – Name of new column with collapsed data.

	reducer (function) – Function to pass to reducer.

	append (bool, optional) – Set True to add new column to existing data dict, False to create
a new Event with just the collapsed data.






	Returns:	New event object.




	Return type:	Event












	
static combine(events, field_spec, reducer)

	Combines multiple events together into a new array of events, one
for each time/index/timerange of the source events. The list of
events may be specified as an array or Immutable.List. Combining acts
on the fields specified in the fieldSpec and uses the reducer
function to take the multiple values and reducer them down to one.

The return result will be an of the same form as the input. If you
pass in an array of events, you will get an array of events back. If
you pass an Immutable.List of events then you will get an
Immutable.List of events back.

This is the general version of Event.sum() and Event.avg(). If those
common use cases are what you want, just use those functions. If you
want to specify your own reducer you can use this function.

See also: TimeSeries.timeSeriesListSum()





	Parameters:	
	events (list) – List of Event objects

	field_spec (string, list) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.  If None, all columns
will be operated on.

	reducer (function) – Reducer function to apply to column data






	Returns:	List of new events




	Return type:	list




	Raises:	EventException – Raised if illegal input is received.












	
end()

	The end time of this Event, which will be just the timestamp.





	Returns:	Datetime object


	Return type:	datetime.datetime










	
static is_duplicate(event1, event2, ignore_values=True)

	Returns if the two supplied events are duplicates
of each other. By default, duplicated means that the
timestamps are the same. This is the case with incoming events
where the second event is either known to be the same (but
duplicate) of the first, or supersedes the first. You can
also pass in false for ignoreValues and get a full
compare.





	Parameters:	
	event1 (Event, IndexedEvent or TimeSeriesEvent) – One of the event variants.

	event2 (Event, IndexedEvent or TimeSeriesEvent) – One of the event variants.

	ignore_values (bool, optional) – If set to True, the values of the events will be compared
as well. The default means only the type and key will
be compared.






	Returns:	Description




	Return type:	TYPE












	
static is_valid_value(event, field_path=None)

	The same as Event.value() only it will return false if the
value is either undefined, NaN or Null.





	Parameters:	
	event (Event) – An event.

	field_path (str, list, tuple, None, optional) – Name of value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.








	Returns:	Return false if undefined, NaN, or None.




	Return type:	bool












	
key()

	Return timestamp as ms since epoch





	Returns:	ms since epoch.


	Return type:	int










	
static map(events, field_spec=None)

	Maps a list of events according to the selection
specification in. The spec may be a single
field name, a list of field names, or a function
that takes an event and returns a key/value pair.

Example 1

        in   out
 3am    1    2
 4am    3    4

result ->  {in: [1, 3], out: [2, 4]}









	Parameters:	
	events (list) – A list of events

	field_spec (str, list, func or None, optional) – Column or columns to map. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this. If None, then
all columns will be mapped.

If field_spec is a function, the function should return a
dict. The keys will be come the “column names” that will
be used in the dict that is returned.








	Returns:	A dict of mapped columns/values.




	Return type:	dict












	
static map_reduce(events, field_spec, reducer)

	map and reduce





	Parameters:	
	events (list) – A list of events

	field_spec (str, list, func or None, optional) – Column or columns to map. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this. If None, then
all columns will be mapped.

	reducer (function) – The reducer function.






	Returns:	A dict as returned by reduce()




	Return type:	dict












	
static merge(events)

	Merges multiple events together into a new array of events, one
for each time/index/timerange of the source events. Merging is done on
the data of each event. Values from later events in the list overwrite
early values if fields conflict.

Common use cases:


	append events of different timestamps

	merge in events with one field to events with another

	merge in events that supersede the previous events







	Parameters:	events (list) – A list of a homogenous kind of event.


	Returns:	A list of the merged events.


	Return type:	list


	Raises:	EventException – Raised if event list is not homogenous.










	
static reduce(mapped, reducer)

	Takes a list of events and a reducer function and returns
a new Event with the result, for each column. The reducer is
of the form

function sum(valueList) {
    return calcValue;
}









	Parameters:	
	mapped (dict) – Dict as produced by map()

	reducer (function) – The reducer function.






	Returns:	A dict of reduced values.




	Return type:	dict












	
static same(event1, event2)

	Different name for is() which is an invalid method name.
Different than __eq__ - see Object.is() JS documentation.

Check if the two objects are the same.





	Parameters:	
	event1 (Event) – An event.

	event2 (Event) – Another event.






	Returns:	Returns True if the event payloads is the same.




	Return type:	bool












	
static selector(event, field_spec=None)

	Function to select specific fields of an event using
a fieldSpec and return a new event with just those fields.

The fieldSpec currently can be:


	A single field name

	An list of field names



The function returns a new event.





	Parameters:	
	event (Event) – Event to pull from.

	field_spec (str, list, tuple, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.  If None, the default
column ‘value’ will be used.






	Returns:	A new event object.




	Return type:	Event












	
set_data(data)

	Sets the data portion of the event and returns a new Event.





	Parameters:	data (dict) – New data payload for this event object.


	Returns:	A new event object.


	Return type:	Event










	
static sum(events, field_spec=None, filter_func=None)

	combine() called with a summing function as a reducer. All
of the events need to have the same timestamp.





	Parameters:	
	events (list) – A list of Event objects

	field_spec (list, str, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.  If None, all columns
will be operated on.

	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	A list containing the summed events.




	Return type:	list




	Raises:	EventException – Raised on mismatching timestamps.












	
timestamp()

	The timestamp of this data





	Returns:	Datetime object


	Return type:	datetime.datetime










	
timestamp_as_local_string()

	The timestamp of this data, in Local time, as a formatted string.





	Returns:	Formatted data string.


	Return type:	str










	
timestamp_as_utc_string()

	The timestamp of this data, in UTC time, as a formatted string.





	Returns:	Formatted data string.


	Return type:	str










	
to_json()

	Returns the Event as a JSON object, essentially

{time: ms_since_epoch, data: {key: value, ...}}





This is actually like json.loads(s) - produces the
actual data structure from the object internal data.





	Returns:	time/data keys


	Return type:	dict










	
to_point(cols=None)

	Returns a flat array starting with the timestamp, followed by the values.
Can be given an optional list of columns so the returned list will
have the values in order. Primarily for the TimeSeries wire format.





	Parameters:	cols (list, optional) – List of data columns to order the data points in so the
TimeSeries wire format lines up correctly. If not specified,
the points will be whatever order that dict.values() decides
to return it in.


	Returns:	Epoch ms followed by points.


	Return type:	list










	
type()

	Return type of the event object





	Returns:	Return the class of thise event type.


	Return type:	class














	
class pypond.event.EventBase(underscore_d)

	Bases: pypond.bases.PypondBase

Common code for the event classes.





	Parameters:	underscore_d (pyrsistent.pmap) – Immutable dict-like object containing the payload for the
events.






	
__eq__(other)

	equality operator. need this to be able to check if
the event_list in a collection is the same as another.





	Parameters:	other (Event) – Event object for == comparison.


	Returns:	True if other event has same payload.


	Return type:	bool










	
__str__()

	call to_string()






	
begin()

	abstract, override in subclass





	Raises:	NotImplementedError – Needs to be implemented in subclasses.










	
data()

	Direct access to the event data. The result will be an pyrsistent.pmap.





	Returns:	The immutable data payload.


	Return type:	pyrsistent.pmap










	
static data_from_arg(arg)

	extract data from a constructor arg and make immutable.





	Parameters:	arg (dict, pmap, int, float, str) – Data payloas as passed to one of the constructors. If dict or
pmap, that is used as the data payload, if other value, then
presumed to be a simple payload of {‘value’: arg}.


	Returns:	Immutable dict-like object


	Return type:	pyrsistent.pmap


	Raises:	EventException – Raised on bad arg input.










	
end()

	abstract, override in subclass





	Raises:	NotImplementedError – Needs to be implemented in subclasses.










	
get(field_path=None)

	Get specific data out of the Event. The data will be converted
to a js object. You can use a fieldSpec to address deep data.
A fieldSpec could be “a.b” or it could be [‘a’, ‘b’]. Favor
the list version please.

The field spec can have an arbitrary number of “parts.”





	Parameters:	field_path (str, list, tuple, None, optional) – Name of value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.




	Returns:	Type depends on underyling data


	Return type:	various










	
static index_from_args(instance_or_index, utc=True)

	create Index from a constructor arg.





	Parameters:	
	instance_or_index (Index or str) – Index value as passed to a constructor

	utc (bool, optional) – Use utc time internally, please don’t not do this.






	Returns:	New Index object from args.




	Return type:	Index




	Raises:	EventException – Raised on invalid arg.












	
stringify()

	Produce a json string of the internal data.





	Returns:	String representation of this object’s internal data.


	Return type:	str










	
static timerange_from_arg(arg)

	create TimeRange from a constructor arg.





	Parameters:	arg (list, tuple, pvector or TimeRange) – Time value as passed to one of the constructors.


	Returns:	New TimeRange instance from args


	Return type:	TimeRange


	Raises:	EventException – Raised on invalid arg.










	
timestamp()

	abstract, override in subclass





	Raises:	NotImplementedError – Needs to be implemented in subclasses.










	
static timestamp_from_arg(arg)

	extract timestamp from a constructor arg.





	Parameters:	arg (int or datetime.datetime) – Time value as passed to one of the constructors


	Returns:	Datetime object that has been sanitized


	Return type:	datetime.datetime


	Raises:	EventException – Does not accept unaware datetime objects.










	
to_json()

	abstract, override in subclasses.





	Raises:	NotImplementedError – Needs to be implemented in subclasses.










	
to_string()

	Retruns the Event as a string, useful for serialization.
It’s a JSON string of the whole object.

In JS land, this is synonymous with __str__ or __unicode__





	Returns:	String representation of this object.


	Return type:	str










	
ts

	A property to expose the datetime.datetime value returned
by the timestamp() method.  This is so we can support sorting
of a list of events via the following method:


ordered = sorted(self._event_list, key=lambda x: x.ts)






	Returns:	Returns the value returned by timestamp()


	Return type:	datetime.datetime










	
value(field_path=None)

	Alias for get()





	Parameters:	field_path (str, list, tuple, None) – Name of value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.




	Returns:	Type depends on underlying data.


	Return type:	various
















pypond.exceptions module

Custom exception and warning classes.


	
exception pypond.exceptions.CollectionException(value)

	Bases: exceptions.Exception

Custom Collection exception






	
exception pypond.exceptions.CollectionWarning

	Bases: exceptions.Warning

Custom Collection warning






	
exception pypond.exceptions.EventException(value)

	Bases: exceptions.Exception

Custom Event exception






	
exception pypond.exceptions.EventWarning

	Bases: exceptions.Warning

Custom Event warning






	
exception pypond.exceptions.FilterException(value)

	Bases: exceptions.Exception

Custom Filter exception






	
exception pypond.exceptions.FilterWarning

	Bases: exceptions.Warning

Custom Filter warning






	
exception pypond.exceptions.FunctionException(value)

	Bases: exceptions.Exception

Custom Function exception






	
exception pypond.exceptions.FunctionWarning

	Bases: exceptions.Warning

Custom Function warning






	
exception pypond.exceptions.IndexException(value)

	Bases: exceptions.Exception

Custom Index exception






	
exception pypond.exceptions.IndexWarning

	Bases: exceptions.Warning

Custom Index warning






	
exception pypond.exceptions.PipelineException(value)

	Bases: exceptions.Exception

Custom Pipeline exception






	
exception pypond.exceptions.PipelineIOException(value)

	Bases: exceptions.Exception

Custom PipelineIO exception






	
exception pypond.exceptions.PipelineIOWarning

	Bases: exceptions.Warning

Custom PipelineIO warning






	
exception pypond.exceptions.PipelineWarning

	Bases: exceptions.Warning

Custom Pipeline warning






	
exception pypond.exceptions.ProcessorException(value)

	Bases: exceptions.Exception

Custom Processor exception






	
exception pypond.exceptions.ProcessorWarning

	Bases: exceptions.Warning

Custom Processor warning






	
exception pypond.exceptions.TimeRangeException(value)

	Bases: exceptions.Exception

Custom TimeRange exception






	
exception pypond.exceptions.TimeRangeWarning

	Bases: exceptions.Warning

Custom TimeRange warning






	
exception pypond.exceptions.TimeSeriesException(value)

	Bases: exceptions.Exception

Custom TimeSeries exception






	
exception pypond.exceptions.TimeSeriesWarning

	Bases: exceptions.Warning

Custom TimeSeries warning






	
exception pypond.exceptions.UtilityException(value)

	Bases: exceptions.Exception

Custom Utility exception






	
exception pypond.exceptions.UtilityWarning

	Bases: exceptions.Warning

Custom Utility warning








pypond.functions module

Functions to act as reducers/aggregators, etc.


	
class pypond.functions.Filters

	Bases: object

Filter functions to pass to aggregation function factory
methods.

These all control how the underlying aggregators handle missing/invalid
values.  Can pass things through (the default to all agg functions),
ignore any bad values, transform any bad values to zero, or make the
entire aggregation fail if there are any bad values.


	
static ignore_missing(events)

	Pull out the bad values resulting in a shorter array.






	
static keep_missing(events)

	no-op - default






	
static none_if_empty(events)

	Return none if the event list is empty. Could be used to override
the default behavior of Functions.avg(), etc






	
static propogate_missing(events)

	It’s all bad if there are missing values - return None if so.






	
static zero_missing(events)

	Make bad values 0 - array will be the same length.










	
class pypond.functions.Functions

	Bases: object

Utility class to contain the functions.

The inner() function is the one that does the actual processing and
it returned by calling the outer named function.  Previously one would
pass Functions.sum to an aggregation or reducer method:

timeseries.aggregate(Functions.sum, 'in')





Now it is a factory to return the acutal function:

timeseries.aggregate(Functions.sum(), 'in')





The static methods in the Filters class can be passed to the outer
factory method to control how bad values are handled:

timeseries.aggregate(Functions.sum(Filters.zero_missing), 'in')






	
static avg(flt=<function keep_missing>)

	




	
static count(flt=<function keep_missing>)

	




	
static difference(flt=<function keep_missing>)

	




	
static first(flt=<function keep_missing>)

	




	
static keep(flt=<function keep_missing>)

	




	
static last(flt=<function keep_missing>)

	




	
static max(flt=<function keep_missing>)

	




	
static median(flt=<function keep_missing>)

	




	
static min(flt=<function keep_missing>)

	




	
static percentile(perc, method='linear', flt=<function keep_missing>)

	




	
static stddev(flt=<function keep_missing>)

	




	
static sum(flt=<function keep_missing>)

	








	
pypond.functions.f_check(flt)

	Set the default filter for aggregation operations when no
filter is specified. When one is, make sure that it is a
valid filter.








pypond.index module

Implementation of Pond Index class.

http://software.es.net/pond/#/index


	
class pypond.index.Index(s, utc=True)

	Bases: pypond.bases.PypondBase

An index that represents as a string a range of time. That range may either
be in UTC or local time. UTC is the default.

The actual derived timerange can be found using asRange(). This will return
a TimeRange instance.

The original string representation can be found with toString(). A nice
version for date based indexes (e.g. 2015-03) can be generated with
toNiceString(format) (e.g. March, 2015).

The index string arg will may be of two forms:


	2015-07-14  (day)

	2015-07     (month)

	2015        (year)



or:


	1d-278      (range, in n x days, hours, minutes or seconds)







	Parameters:	
	s (str) – The index string in one of the aforementioned formats.

	utc (bool, optional) – Index interpreted as UTC or localtime. Please don’t set this to false
since non-UTC times are the devil.






	Raises:	IndexException – Raised if arg s could not be translated into a valid timerange/index.








	
__str__()

	call to_string()





	Returns:	String representation of the object.


	Return type:	str










	
as_string()

	Alias for to_string()





	Returns:	The index string as previously outlined.


	Return type:	str










	
as_timerange()

	Returns the Index as a TimeRange





	Returns:	The underlying time range object.


	Return type:	TimeRange










	
begin()

	Returns start date of the index.





	Returns:	Start date of the index.


	Return type:	datetime.datetime










	
end()

	Returns end date of the index.





	Returns:	End date of the index.


	Return type:	datetime.datetime










	
static get_daily_index_string(date, utc=True)

	Generate an index string with day granularity.





	Parameters:	
	date (datetime.datetime) – An aware UTC datetime object

	utc (bool, optional) – Render the index in local time this is used for display purposes
to render charts in a localized way.






	Returns:	The formatted index string.




	Return type:	string












	
static get_index_string(win, dtime)

	Return the index string given an index prefix and a datetime
object. Example usage follows.

dtime = aware_dt_from_args(
    dict(year=2015, month=3, day=14, hour=7, minute=32, second=22))

idx_str = Index.get_index_string('5m', dtime)

self.assertEqual(idx_str, '5m-4754394')





previously: Generator.bucketIndex





	Parameters:	
	win (str) – Prefix of the index string.

	dtime (datetime.datetime) – Datetime to generate index string from.






	Returns:	The index string.




	Return type:	str












	
static get_index_string_list(win, timerange)

	Given the time range, return a list of strings of index values
every <prefix> tick. Example usage follows (from test suite).

dtime_1 = aware_dt_from_args(
dict(year=2015, month=3, day=14, hour=7, minute=30, second=0))

dtime_2 = aware_dt_from_args(
    dict(year=2015, month=3, day=14, hour=8, minute=29, second=59))

idx_list = Index.get_index_string_list('5m', TimeRange(dtime_1, dtime_2))

self.assertEqual(len(idx_list), 12)
self.assertEqual(idx_list[0], '5m-4754394')
self.assertEqual(idx_list[-1], '5m-4754405')





previously: Generator.bucketIndexList





	Parameters:	
	win (str) – Prefix of the index string.

	timerange (TimeRange) – Time range object to generate index string from






	Returns:	A list of strings of index values at every “tick” in the range
specified.




	Return type:	list












	
static get_monthly_index_string(date, utc=True)

	Generate an index string with month granularity.





	Parameters:	
	date (datetime.datetime) – An aware UTC datetime object

	utc (bool, optional) – Render the index in local time this is used for display purposes
to render charts in a localized way.






	Returns:	The formatted index string.




	Return type:	string












	
static get_yearly_index_string(date, utc=True)

	Generate an index string with year granularity.





	Parameters:	
	date (datetime.datetime) – An aware UTC datetime object

	utc (bool, optional) – Render the index in local time this is used for display purposes
to render charts in a localized way.






	Returns:	The formatted index string.




	Return type:	string












	
range_from_index_string(idx_str, is_utc=True)

	Generate the time range from the idx string.

The index string arg will may be of two forms:


	2015-07-14  (day)

	2015-07     (month)

	2015        (year)



or:


	1d-278      (range, in n x days, hours, minutes or seconds)



and return a TimeRange for that time. The TimeRange may be considered to be
local time or UTC time, depending on the utc flag passed in.

This was in src/util.js in the original project, but the only thing using
the code in that util.js was the Index class, and it makes more sense
having this as a class method and setting self._index_type makes further
regex analysis of the index unnecessary.





	Parameters:	
	idx_str (str) – The index string in one of the aformentioned formats

	is_utc (bool, optional) – Index interpreted as utc or localtime. Please don’t use localtime.






	Returns:	A time range made from the interpreted index string.




	Return type:	TimeRange




	Raises:	IndexException – Raised when the string format is determined to be invalid.












	
to_json()

	Returns the Index as JSON, which will just be its string
representation

This is actually like json.loads(s) - produces the
actual data structure.





	Returns:	The index string as previously outlined.


	Return type:	str










	
to_nice_string(fmt=None)

	for the calendar range style Indexes, this lets you return
that calendar range as a human readable format, e.g. “June, 2014”.
The format specified is a Moment.format.

Originally implemented at Util.niceIndexString in the JS source,
this is just a greatly simplified version using self._index_type.





	Parameters:	fmt (str, optional) – User can pass in a valid strftime() format string.


	Returns:	FThe index text string as a formatted (strftime()) time.


	Return type:	str










	
to_string()

	Simply returns the Index as its string

In JS land, this is synonymous with __str__ or __unicode__





	Returns:	The index string as previously outlined.


	Return type:	str










	
utc

	accessor for internal utc boolean.






	
static window_duration(win)

	duration in ms given a window duration string.

previously: Generator.getLengthFromSize.





	Parameters:	win (str) – An index string in the previously mentioned 1d-278 style format.


	Returns:	Duration of the index/range in ms.


	Return type:	int










	
static window_position_from_date(win, dtime)

	window position from datetime object. Called by get_index_string_list().

previously: Generator.getBucketPosFromDate





	Parameters:	
	win (str) – Prefix if the index string.

	dtime (datetime.datetime) – Datetime to calculate suffix from.






	Returns:	The suffix for the index string.




	Return type:	int


















pypond.indexed_event module

Event with a time range specified as an index.


	
class pypond.indexed_event.IndexedEvent(instance_or_begin, data=None, utc=True)

	Bases: pypond.event.EventBase

Associates a time range specified as an index.

The creation of an IndexedEvent is done by combining two parts:
the Index and the data.

To construct you specify an Index, along with the data.

The index may be an Index, or a string.


	To specify the data you can supply either:

	
	a python dict containing key values pairs

	an pyrsistent.pmap, or

	a simple type such as an integer. In the case of the simple type
this is a shorthand for supplying {“value”: v}.











	Parameters:	
	instance_or_begin (Index, pyrsistent.pmap, or str.) – Index for copy constructor, pmap as the fully
formed internals or a string arg to the Index class.

	data (dict or pyrsistent.pmap, optional) – Data payload.

	utc (bool, optional) – UTC or localtime to create index in. Please don’t not use UTC.
Yes, that’s a double negative.










	
begin()

	The begin time of this Event, which will be just the timestamp.





	Returns:	Datetime of the beginning of the range.


	Return type:	datetime.datetime










	
end()

	The end time of this Event, which will be just the timestamp.





	Returns:	Datetime of the end of the range.


	Return type:	datetime.datetime










	
index()

	Returns the Index associated with the data in this Event.





	Returns:	The underlying index object


	Return type:	Index










	
index_as_string()

	Returns the Index as a string, same as event.index().toString().





	Returns:	str – String version of the underlying Index.


	Returns:	String version of the underlying index.


	Return type:	str










	
key()

	Return the index string of this object.





	Returns:	The index of this object.


	Return type:	Index










	
set_data(data)

	Sets the data portion of the event and returns a new IndexedEvent.





	Parameters:	
	data (dict) – The new data portion for this event object.

	data – The new data payload for this event object.






	Returns:	IndexedEvent - a new IndexedEvent object.




	Returns:	A new indexed event with the provided payload.




	Return type:	IndexedEvent












	
timerange()

	The TimeRange of this data.





	Returns:	Time range from the underlying index.


	Return type:	TimeRange










	
timerange_as_local_string()

	The timerange of this data, in Local time, as a string..





	Returns:	Underlying TimeRange as localtime string.


	Return type:	str










	
timerange_as_utc_string()

	The timerange of this data, in UTC time, as a string.





	Returns:	Underlying TimeRange as UTC string.


	Return type:	str










	
timestamp()

	The timestamp of this beginning of the range.





	Returns:	Datetime of the beginning of the range.


	Return type:	datetime.datetime










	
to_json()

	Returns the Event as a JSON object, essentially:
{time: t, data: {key: value, ...}}

This is actually like json.loads(s) - produces the
actual vanilla data structure.





	Returns:	Dictionary representation of object internals.


	Return type:	dict










	
to_point(cols=None)

	Returns a flat array starting with the timestamp, followed by the values.
Doesn’t include the groupByKey (key).

Can be given an optional list of columns so the returned list will
have the values in order. Primarily for the TimeSeries wire format.





	Parameters:	cols (list, optional) – List of columns to order the points in so the TimeSeries
wire format is rendered corectly.


	Returns:	Epoch ms followed by points.


	Return type:	list










	
type()

	Return the class of this event type.





	Returns:	The class of this event type.


	Return type:	class
















pypond.pipeline module

Implementation of the Pond Pipeline classes.

http://software.es.net/pond/#/pipeline


	
class pypond.pipeline.Pipeline(arg=None)

	Bases: pypond.bases.PypondBase

Build a new Pipeline.

A pipeline manages a processing chain, for either batch or stream processing
of collection data.

The argument may be either:


	a Pipeline (copy ctor)

	a pyrsistent.PMap in which case the internal state will be constructed from the map.



Usually you would initialize a Pipeline using the factory function,
rather than this object directly.





	Parameters:	arg (Pipeline, PMap, None) – See above.






	
add_result(arg1, arg2=None)

	Add the incoming result from the processor callback.





	Parameters:	
	arg1 (str) – Collection key string.

	arg2 (Collection or str) – Generally the incoming collection.














	
aggregate(fields)

	Uses the current Pipeline windowing and grouping
state to build collections of events and aggregate them.

IndexedEvents will be emitted out of the aggregator based
on the emitOn state of the Pipeline.

To specify what part of the incoming events should
be aggregated together you specify a fields
object. This is a map from fieldName to operator.

uin = Stream()

(
    Pipeline()
    .from_source(uin)
    .window_by('1h')
    .emit_on('eachEvent')
    .aggregate(
        {
            'in_avg': {'in': Functions.avg()},
            'out_avg': {'out': Functions.avg()}
        }
    )
    .to(EventOut, cback)
)









	Parameters:	fields (dict) – Fields and operators to be aggregated. Deep fields may be
indicated by using this.style.notation. As in the above
example, they fields.keys() are the names of the new
columns to be created (or an old one to be overwritten),
and the value is another dict - the key is the existing
column and the value is the function to apply to it when
creating the new column.


	Returns:	The Pipeline


	Return type:	Pipeline










	
align(field_spec=None, window='5m', method='linear', limit=None)

	Align entry point






	
as_events(options=None)

	Converts incoming TimeRangeEvents or IndexedEvents to
Events. This is helpful since some processors will
emit TimeRangeEvents or IndexedEvents, which may be
unsuitable for some applications.

There are three options:


	use the beginning time (options = Options(alignment=’lag’)

	use the center time (options = Options(alignment=’center’)

	use the end time (options = Options(alignment=’lead’)







	Parameters:	options (Options) – The options, see above.


	Returns:	The Pipeline.


	Return type:	Pipeline










	
as_indexed_events(options=None)

	Converts incoming Events to IndexedEvents.

Note: It isn’t possible to convert TimeRangeEvents to IndexedEvents.





	Parameters:	options (Options) – Contains the conversion options. In this case, the duration string
of the Index is expected. Must contain the key ‘duration’ and the
duration string is of the form “1h” for one hour, “30s” for 30
seconds and so on.


	Returns:	Description


	Return type:	TYPE










	
as_time_range_events(options=None)

	Converts incoming Events or IndexedEvents to TimeRangeEvents.

There are three option for alignment:


	time range will be in front of the timestamp - ie:
options = Options(alignment=’front’)

	time range will be centered on the timestamp - ie:
options = Options(alignment=’center’)

	time range will be positoned behind the timestamp - ie:
options = Options(alignment=’behind’)



The duration is of the form “1h” for one hour, “30s” for 30 seconds and so on.





	Parameters:	options (dict) – Args to add to Options - duration and alignment.


	Returns:	The Pipeline


	Return type:	Pipeline










	
clear_group_by()

	Remove the grouping from the pipeline. In other words
recombine the events.





	Returns:	The Pipeline


	Return type:	Pipeline










	
clear_results()

	Clear the result state of this Pipeline instance.






	
clear_window()

	Remove windowing from the Pipeline. This will
return the pipeline to no window grouping. This is
useful if you have first done some aggregation by
some window size and then wish to collect together
the all resulting events.





	Returns:	The Pipeline


	Return type:	Pipeline










	
collapse(field_spec_list, name, reducer, append=True)

	Collapse a subset of columns using a reducer function.





	Parameters:	
	field_spec_list (list) – List of columns to collapse. If you need to retrieve deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].

	name (string) – The resulting output column’s name.

	reducer (function) – Function to use to do the reduction.

	append (bool) – Add the new column to the existing ones, or replace them.






	Returns:	The Pipeline.




	Return type:	Pipeline












	
count(observer, force=True)

	Outputs the count of events.





	Parameters:	
	observer (function) – The callback function. This function will be passed collection.size(),
window_key, group_by_key) as args.

	force (bool, optional) – Flush at the end of processing batch events, output again with possibly
partial result






	Returns:	The Pipeline.




	Return type:	Pipeline












	
emit_on(trigger)

	Sets the condition under which an accumulated collection will
be emitted. If specified before an aggregation this will control
when the resulting event will be emitted relative to the
window accumulation. Current options are:


	to emit on every event, or

	just when the collection is complete, or

	when a flush signal is received, either manually calling done(),
or at the end of a bounded source.



The strings indicating how to trigger how a Collection should
be emitted - can be:


	“eachEvent” - when a new event comes in, all currently maintained
collections will emit their result.

	“discard” - when a collection is to be discarded, first it will
emit. But only then.

	“flush” - when a flush signal is received.



The difference will depend on the output you want, how often
you want to get updated, and if you need to get a partial state.
There’s currently no support for late data or watermarks. If an
event passes comes in after a collection window, that collection
is considered finished.





	Parameters:	trigger (string) – See above


	Returns:	The Pipeline


	Return type:	Pipeline










	
fill(field_spec=None, method='zero', fill_limit=None)

	Take the data in this timeseries and “fill” any missing
or invalid values. This could be setting None values to zero
so mathematical operations will succeed, interpolate a new
value, or pad with the previously given value.





	Parameters:	
	field_spec (str, list, tuple, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.

If None, the default column field ‘value’ will be used.



	method (str, optional) – Filling method: zero | linear | pad

	fill_limit (None, optional) – Set a limit on the number of consecutive events will be filled
before it starts returning invalid values. For linear fill,
no filling will happen if the limit is reached before a valid
value is found.






	Returns:	The Pipeline.




	Return type:	Pipeline












	
filter(op)

	Filter the event stream using an operator





	Parameters:	op (function) – A function that returns True or False


	Returns:	The Pipeline


	Return type:	Pipeline










	
first()

	Get the first processor





	Returns:	An pipeline processor.


	Return type:	Processor










	
from_source(src)

	Note: originally named from() in JS code.

The source to get events from. The source needs to be able to
iterate its events using for..of loop for bounded Ins, or
be able to emit() for unbounded Ins. The actual batch, or stream
connection occurs when an output is defined with to().

Pipelines can be chained together since a source may be another
Pipeline.





	Parameters:	src (Bounded, Stream or Pipeline) – The source for the Pipeline, or another Pipeline.


	Returns:	The Pipeline.


	Return type:	Pipeline










	
get_emit_on()

	Get the emit on (eachEvent, etc).





	Returns:	The emit on string (discards, flush, etc).


	Return type:	str










	
get_group_by()

	Get the group by callback.





	Returns:	Returns the group by function.


	Return type:	function










	
get_utc()

	Get the UTC state..





	Returns:	In UTC or not.


	Return type:	bool










	
get_window_duration()

	Get the window duration.





	Returns:	A formatted window duration.


	Return type:	str










	
get_window_type()

	Get the window type (global, etc).





	Returns:	The window type.


	Return type:	str










	
group_by(key=None)

	Sets a new groupBy expression. Returns a new Pipeline.

Grouping is a state set on the Pipeline. Operations downstream
of the group specification will use that state. For example, an
aggregation would occur over any grouping specified.

The key to group by. You can pass in a function that takes and
event as an arg and dynamically returns the group by key.

Otherwise key will be interpreted as a field_path:


	a single field name or deep.column.path, or

	a array style field_path [‘deep’, ‘column’, ‘path’] to a single
column.



This is not a list of multiple columns, it is the path to
a single column to pull group by keys from. For example,
a column called ‘status’ that contains the values ‘OK’ and
‘FAIL’ - they key would be ‘status’ and two collections
OK and FAIL will be generated.

If key is None, then the default column ‘value’ will
be used.





	Parameters:	key (function, list or string) – The key to group by. See above.


	Returns:	The Pipeline


	Return type:	Pipeline










	
input()

	Originally called in() in JS code.






	
last()

	Get the last processor





	Returns:	An pipeline processor.


	Return type:	Processor










	
map(op)

	Map the event stream using an operator.





	Parameters:	op (function) – A function that returns a new Event.


	Returns:	The Pipeline.


	Return type:	Pipeline










	
mode()

	Get the pipeline mode (ie: batch, stream).





	Returns:	The mode.


	Return type:	str










	
offset_by(offset_by, field_spec=None)

	Processor to offset a set of fields by a value. Mostly used for
testing processor and pipeline operations with a simple operation.





	Parameters:	
	offset_by (int, float) – The amout to offset by.

	field_spec (str, list, tuple, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.

If None, the default ‘value’ column will be used.








	Returns:	The modified Pipeline.




	Return type:	Pipeline












	
rate(field_spec=None, allow_negative=True)

	derivative entry point






	
results_done()

	Set result state as done.






	
select(field_spec=None)

	Select a subset of columns.





	Parameters:	field_spec (str, list, tuple, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.

If None, the default ‘value’ column will be used.




	Returns:	The Pipeline.


	Return type:	Pipeline










	
take(limit)

	Take events up to the supplied limit, per key.





	Parameters:	
	limit (int) – Integer number of events to take.

	global_flush (bool, optional) – If set to true (default is False) then the Taker will
send out a single .flush() event if the limit has been
exceeded and the window_type is ‘global.’ This can be
used as a fail safe with processors that cache events
(like the Filler) to ensure all events are emitted when
the Pipeline is used in ‘stream’ mode. This is not
needed in ‘batch’ mode because the flush signal is sent
automatically.






	Returns:	The Pipeline.




	Return type:	Pipeline












	
to(out, observer=None, options=<pypond.util.Options object>)

	Sets up the destination sink for the pipeline.

For a batch mode connection, i.e. one with a Bounded source,
the output is connected to a clone of the parts of the Pipeline dependencies
that lead to this output. This is done by a Runner. The source input is
then iterated over to process all events into the pipeline and though to the Out.

For stream mode connections, the output is connected and from then on
any events added to the input will be processed down the pipeline to
the out.

def cback(event):
    do_something_with_the_event(event)

timeseries = TimeSeries(IN_OUT_DATA)

(
    Pipeline()
    .from_source(timeseries)
    .emit_on('flush')
    .collapse(['in', 'out'], 'total', Functions.sum())
    .aggregate(dict(total=Functions.max()))
    .to(EventOut, cback)
)





NOTE: arg list has been changed from the ordering in the JS source
to conform to python convention.





	Parameters:	
	out (EventOut, CollectionOut, etc instance) – The output.

	observer (function or instance) – The observer.

	options (Options, optional) – Options.






	Returns:	The Pipeline.




	Return type:	Pipeline












	
to_event_list()

	Directly return the results from the processor rather than
passing a callback in.





	Returns:	Returns the _results attribute with events.


	Return type:	list or dict










	
to_keyed_collections()

	Directly return the results from the processor rather than
passing a callback in.





	Returns:	Returns the _results attribute from a Pipeline object after processing.
Will contain Collection objects.


	Return type:	list or dict










	
window_by(window_or_duration=None, utc=True)

	Set the window, returning a new Pipeline. A new window will
have a type and duration associated with it. Current available
types are:


	fixed (e.g. every 5m)

	calendar based windows (e.g. every month)



Windows are a type of grouping. Typically you’d define a window
on the pipeline before doing an aggregation or some other operation
on the resulting grouped collection. You can combine window-based
grouping with key-grouping (see groupBy()).

There are several ways to define a window. The general format is
an options object containing a type field and a duration field.

Currently the only accepted type is fixed, but others are planned.
For duration, this is a duration string, for example “30s” or “1d”.
Supported are: seconds (s), minutes (m), hours (h) and days (d).

The argument here is either a string or an object with string
attrs type and duration. The arg can be either a window or a duration.

If no arg is supplied or set to None, the window_type is set
to ‘global’ and there is no duration.

There is also a short-cut notation for a fixed window or a calendar
window. Simply supplying the duration string (“30s” for example) will
result in a fixed window type with the supplied duration.

Window window_or_duration may be:


	A fixed interval duration (see next): “fixed”

	A calendar interval: “daily,” “monthly” or “yearly”



Duration is of the form:


	“30s” or “1d” etc - supports seconds (s), minutes (m), hours (h),
days (d). When duration is passed as the arg, window_type is
set to ‘fixed’.







	Parameters:	
	window_or_duration (string, Capsule) – See above.

	utc (bool) – How to render the aggregations - in UTC vs. the user’s local time.
Can not be set to False if using a fixed window size.






	Returns:	The Pipeline.




	Return type:	Pipeline
















	
class pypond.pipeline.Runner(pline, output)

	Bases: pypond.bases.PypondBase

A runner is used to extract the chain of processing operations
from a Pipeline given an Output. The idea here is to traverse
back up the Pipeline(s) and build an execution chain.

When the runner is started, events from the “in” are streamed
into the execution chain and outputed into the “out”.

Rebuilding in this way enables us to handle connected pipelines:

                   |--
in --> pipeline ---.
                   |----pipeline ---| -> out





The runner breaks this into the following for execution:

_input        - the "in" or from() bounded input of
                the upstream pipeline
_processChain - the process nodes in the pipelines
                leading to the out
_output       - the supplied output destination for
                the batch process






	NOTE: There’s no current way to merge multiple sources, though

	a time series has a TimeSeries.merge() static method for
this purpose.







	Parameters:	
	pipeline (Pipeline) – The pipeline to run.

	output (PipelineOut) – The output driving this runner










	
start(force=False)

	Start the runner





	Parameters:	
	force (bool, optional) – force Flush at the end of the batch source

	cause any buffers to emit. (to) – 


















	
pypond.pipeline.default_callback(*args)

	Default no-op callback for group_by in the Pipeline constructor.








pypond.range module

Implementation of Pond TimeRange classes.

http://software.es.net/pond/#/timerange


	
class pypond.range.TimeRange(instance_or_begin, end=None)

	Bases: pypond.range.TimeRangeBase

Builds a new TimeRange. First arg may be of several different formats:


	Another TimeRange (copy constructor)

	A python tuple, list or pyrsistent.PVector object containing two
python datetime objects or ms timestamps.

	Two arguments, begin and end, each of which may be a datetime object,
or a ms timestamp.







	Parameters:	
	instance_or_begin (TimeRange, iterable, int or datetime.datetime.) – See above for variations.

	end (int or datetime.datetime, optional) – Optional arg for the end of the time range.






	Raises:	TimeRangeException – Raised to indicate errors with args.








	
__str__()

	string repr method.





	Returns:	String repr method.


	Return type:	str










	
begin()

	Returns the begin time of the TimeRange.





	Returns:	The begin time.


	Return type:	datetime.datetime










	
contains(other)

	Returns true if other is completely inside this.





	Parameters:	other (TimeRange) – Another time range object.


	Returns:	Returns true if other range is completely inside this one.


	Return type:	bool










	
disjoint(other)

	Returns true if the passed in other Range in no way
overlaps this time Range.





	Parameters:	other (TimeRange) – Another time range object.


	Returns:	Returns true if other range in no way overlaps this one.


	Return type:	bool










	
duration()

	Return epoch milliseconds.





	Returns:	Duration in ms.


	Return type:	int










	
end()

	Returns the end time of the TimeRange.





	Returns:	The end time.


	Return type:	datetime.datetime










	
equals(other)

	Returns if the two TimeRanges can be considered equal,
in that they have the same times.





	Parameters:	other (TimeRange) – Another time range object


	Returns:	True if both object represent the same time range.


	Return type:	bool










	
extents(other)

	Returns a new Timerange which covers the extents of this and
other combined.





	Parameters:	other (TimeRange) – Another time range object


	Returns:	New time range which covers the extents of this and the
other range combined.


	Return type:	TimeRange










	
humanize()

	Returns a human friendly version of the TimeRange, e.g.
“Aug 1, 2014 05:19:59 am to Aug 1, 2014 07:41:06 am”

This displays in local time, so don’t freak out.





	Returns:	Human friendly time range string.


	Return type:	str










	
humanize_duration()

	Humanize the duration.





	Returns:	Humanized duration string.


	Return type:	str










	
intersection(other)

	Returns a new TimeRange which represents the intersection
(overlapping) part of this and other.





	Parameters:	other (TimeRange) – Another time range object.


	Returns:	A new time range object representing the intersection (overlapping)
part of this and the other.


	Return type:	TimeRange










	
static last_day()

	Generate a time range spanning last 24 hours





	Returns:	A new time range object of the requested duration.


	Return type:	TimeRange










	
static last_month()

	Generate a time range spanning last month.





	Returns:	A new time range object of the requested duration.


	Return type:	TimeRange










	
static last_ninety_days()

	Generate a time range spanning last 90 days





	Returns:	A new time range object of the requested duration.


	Return type:	TimeRange










	
static last_seven_days()

	Generate a time range spanning last 7 days





	Returns:	A new time range object of the requested duration.


	Return type:	TimeRange










	
static last_thirty_days()

	Generate a time range spanning last 30 days





	Returns:	A new time range object of the requested duration.


	Return type:	TimeRange










	
overlaps(other)

	Returns true if the passed in other TimeRange overlaps this time Range.





	Parameters:	other (TimeRange) – Another time range object.


	Returns:	Returns true if other range overlaps this one.


	Return type:	bool










	
range()

	Returns the internal range, which is an Immutable List containing
begin and end values.





	Returns:	Immutable list containing the range.


	Return type:	pyrsistent.pvector










	
relative_string()

	Returns a human friendly version of the TimeRange, e.g.
e.g. “a few seconds ago to a month ago”





	Returns:	Another human friendly duration string.


	Return type:	str










	
set_begin(dtime)

	Sets a new begin time on the TimeRange. The result will be a new TimeRange.





	Parameters:	dtime (datetime.datetime) – New time range boundary.


	Returns:	A new time range object reflecting the new range bounds.


	Return type:	TimeRange


	Raises:	TimeRangeException – Raised on invalid arg.










	
set_end(dtime)

	Sets a new end time on the TimeRange. The result will be a new TimeRange.





	Parameters:	dtime (datetime.datetime) – New time range boundary.


	Returns:	A new time range object reflecting the new range bounds.


	Return type:	TimeRange


	Raises:	TimeRangeException – Raised on invalid arg.










	
to_json()

	Returns the TimeRange as a python list of two ms timestamps.





	Returns:	List of two timestamps.


	Return type:	list










	
to_local_string()

	Returns the TimeRange as a string expressed in local time.





	Returns:	Timerange as a string.


	Return type:	str










	
to_string()

	Returns the TimeRange as a string, useful for serialization.





	Returns:	String representaion of the range.


	Return type:	str










	
to_utc_string()

	Returns the TimeRange as a string expressed in UTC time.





	Returns:	Timerange as string.


	Return type:	str










	
within(other)

	Returns true if this TimeRange is completely within the supplied
other TimeRange.





	Parameters:	other (TimeRange) – Another time range object.


	Returns:	Returns true if this range is completely inside the other one.


	Return type:	bool














	
class pypond.range.TimeRangeBase

	Bases: pypond.bases.PypondBase

Base for TimeRange


	
static awareness_check(dtime)

	Check input to make sure datetimes are aware. Presumes an iterable
contaning datetimes, but will fail over to process a single
datetime object via duck typing.





	Parameters:	dtime (list, tuple or pvector but will failover to datetime.) – An interable of datetime objects


	Raises:	TimeRangeException – Raised if a non-aware datetime object is found.










	
static sanitize_list_input(list_type)

	Validate input when a pvector, list or tuple is passed in
as a constructor arg.





	Parameters:	list_type (list, tuple of pvector) – Iterable containing args (epoch ms or datetime) that was passed to
the constructor.


	Returns:	Immutable list-like object with two elements - the beginning and
ending datetime of the range.


	Return type:	pyrsistent.pvector


	Raises:	TimeRangeException – Raised if bad args have been passed in.










	
static validate_range(range_obj)

	Make sure that the end time is not chronologically before the begin.





	Raises:	TimeRangeException


	Parameters:	range_obj (pyrsistent.pvector) – The internal begin/end immutable range object.


	Raises:	TimeRangeException – Raised if end arg is earlier in time than begin.
















pypond.series module

Implements the Pond TimeSeries class.

http://software.es.net/pond/#/timeseries


	
class pypond.series.TimeSeries(instance_or_wire)

	Bases: pypond.bases.PypondBase

A TimeSeries is a a Series where each event is an association of a timestamp
and some associated data.

Data passed into it may have the following format, which is our wire format

{
"name": "traffic",
"columns": ["time", "value", ...],
"points": [
   [1400425947000, 52, ...],
   [1400425948000, 18, ...],
   [1400425949000, 26, ...],
   [1400425950000, 93, ...],
   ...
 ]
}





Alternatively, the TimeSeries may be constructed from a list of Event objects.

Internaly the above series is represented as two parts:


	
	Collection - an Immutable.List of Events and associated methods

	to query and manipulate that list





	
	Meta data  - an Immutable.Map of extra data associated with the

	TimeSeries







The events stored in the collection may be Events (timestamp based),
TimeRangeEvents (time range based) or IndexedEvents (an alternative form
of a time range, such as “2014-08” or “1d-1234”)

The timerange associated with a TimeSeries is simply the bounds of the
events within it (i.e. the min and max times).

Initialize a TimeSeries object from:


	Another TimeSeries/copy ctor

	An event list

	From the wire format







	Parameters:	instance_or_wire (TimeSeries, list of events, wire format) – See above


	Raises:	TimeSeriesException – Raised when args can not be properly handled.






	
event_type_map

	dict – Map text keys from wire format to the appropriate Event class.






	
__str__()

	call to_string()






	
aggregate(func, field_path=None)

	Aggregates the events down using a user defined function to
do the reduction.





	Parameters:	
	func (function) – Function to pass to map reduce to aggregate.

	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.








	Returns:	Dict of reduced values




	Return type:	dict












	
align(field_spec=None, window='5m', method='linear', limit=None)

	Align entry point






	
at(i)

	Access the series events via numeric index





	Parameters:	i (int) – An array index


	Returns:	The Event object found at index i


	Return type:	Event










	
at_first()

	Return first event in the series





	Returns:	The first event in the series.


	Return type:	Event










	
at_last()

	Return last event in the series





	Returns:	The last event in the series.


	Return type:	Event










	
at_time(time)

	Return an event in the series by its time. This is the same
as calling bisect first and then using at with the index.





	Parameters:	time (datetime.datetime) – A datetime object


	Returns:	The event at the designated time.


	Return type:	Event










	
avg(field_spec=None, filter_func=None)

	Get avg





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Average value




	Return type:	int or float












	
begin()

	Gets the earliest time represented in the TimeSeries.





	Returns:	The begin time of the underlying time range.


	Return type:	datetime.datetime










	
begin_timestamp()

	Gets the earliest time represented in the TimeSeries
in epoch ms.





	Returns:	The begin time of the underlying time range in epoch ms.


	Return type:	int










	
bisect(dtime, b=0)

	Finds the index that is just less than the time t supplied.
In other words every event at the returned index or less
has a time before the supplied t, and every sample after the
index has a time later than the supplied t.

Optionally supply a begin index to start searching from. Returns
index that is the greatest but still below t.





	Parameters:	
	dtime (datetime.datetime) – Date time object to search with

	b (int, optional) – An index position to start searching from.






	Returns:	The index of the Event searched for by dtime.




	Return type:	int












	
static build_metadata(meta)

	Build the metadata out of the incoming wire format





	Parameters:	meta (dict) – Incoming wire format.


	Returns:	Immutable dict of metadata


	Return type:	pyrsistent.pmap










	
clean(field_path=None)

	Returns a new TimeSeries by testing the field_path
values for being valid (not NaN, null or undefined).
The resulting TimeSeries will be clean for that fieldSpec.





	Parameters:	field_path (str, list, tuple, None, optional) – Name of value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.




	Returns:	New time series from clean values from the field spec.


	Return type:	TimeSeries










	
collapse(field_spec_list, name, reducer, append=True)

	Takes a fieldSpecList (list of column names) and collapses
them to a new column which is the reduction of the matched columns
in the fieldSpecList.





	Parameters:	
	field_spec_list (list) – List of columns to collapse. If you need to retrieve deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].

	name (str) – Name of new column containing collapsed values.

	reducer (Function to pass to reducer.) – function

	append (bool, optional) – Append collapsed column to existing data or fresh data payload.






	Returns:	A new time series from the collapsed columns.




	Return type:	TimeSeries












	
collect_by_fixed_window(window_size)

	Summary





	Parameters:	window_size (str) – The window size - 1d, 6h, etc


	Returns:	Returns the _results attribute from a Pipeline object after processing.
Will contain Collection objects.


	Return type:	list or dict










	
collection()

	Returns the internal collection of events for this TimeSeries





	Returns:	Internal collection.


	Return type:	Collection










	
columns()

	create a list of the underlying columns.

Due to the nature of the event data and using dicts, the order
of the column list might be somewhat unpredictable. When generating
points, this is solved by passing the column list to .to_point()
as an optional argument to ensure that the points and the columns
are properly aligned.





	Returns:	List of column names.


	Return type:	list










	
count()

	alias for size.





	Returns:	Number of rows in series.


	Return type:	int










	
crop(timerange)

	Crop the TimeSeries to the specified TimeRange and return
a new TimeSeries





	Parameters:	timerange (TimeRange) – Bounds of the new TimeSeries


	Returns:	The new cropped TimeSeries instance.


	Return type:	TimeSeries










	
daily_rollup(aggregation, to_events=False, utc=False)

	Builds a new TimeSeries by dividing events into days. The days are
in either local or UTC time, depending on if utc(true) is set on the
Pipeline.

Each window then has an aggregation specification applied as
aggregation. This specification describes a mapping of output
columns to fieldNames to aggregation functions. For example:

{
    'in_avg': {'in': Functions.avg()},
    'out_avg': {'out': Functions.avg()},
    'in_max': {'in': Functions.max()},
    'out_max': {'out': Functions.max()},
}





will aggregate both the “in” and “out” columns, using the avg
aggregation function will perform avg and max aggregations on the
in and out columns, across all events within each day, and the
results will be put into the 4 new columns in_avg, out_avg, in_max
and out_max.

Example:

timeseries = TimeSeries(data)
hourly_max_temp = timeseries.daily_rollup(
    {'max_temp': {'temperature': Functions.max()}}
)





This helper function defaults to rendering the aggregations in localtime.
The reason for this is that rendering in localtime makes the most sense
on the client side - like rendering a timeseries chart. A user looking
at a chart in UTC might not make much sense.

Since this is now being used in servers side applications, the optional
arg utc can be set to True to force it to render in UTC instead.

Probably best to favor using .fixed_window_rollup() when wanting to
render in UTC.





	Parameters:	
	aggregation (dict) – The aggregation specification e.g. {‘max_temp’: {‘temperature’: Functions.max()}}

	to_event (bool, optional) – Do conversion to Event objects






	Returns:	The resulting rolled up TimeSeries.




	Return type:	TimeSeries












	
end()

	Gets the latest time represented in the TimeSeries.





	Returns:	The end time of the underlying time range.


	Return type:	datetime.datetime










	
end_timestamp()

	Gets the latest time represented in the TimeSeries
in epoch ms.





	Returns:	The end time of the underlying time range in epoch ms.


	Return type:	int










	
static equal(series1, series2)

	Check equality - same instance.





	Parameters:	
	series1 (TimeSeries) – A time series

	series2 (TimeSeries) – Another time series






	Returns:	Are the two the same instance?




	Return type:	bool












	
event_type_map = {'index': <class 'pypond.indexed_event.IndexedEvent'>, 'timerange': <class 'pypond.timerange_event.TimeRangeEvent'>, 'time': <class 'pypond.event.Event'>}

	




	
events()

	Generator to allow for..of loops over series.events()





	Returns:	Generator for loops.


	Return type:	iterator










	
fill(field_spec=None, method='zero', fill_limit=None)

	Take the data in this timeseries and “fill” any missing
or invalid values. This could be setting None values to zero
so mathematical operations will succeed, interpolate a new
value, or pad with the previously given value.





	Parameters:	
	field_spec (str, list, tuple, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.

If None, the default column field ‘value’ will be used.



	method (str, optional) – Filling method: zero | linear | pad

	fill_limit (None, optional) – Set a limit on the number of consecutive events will be filled
before it starts returning invalid values. For linear fill,
no filling will happen if the limit is reached before a valid
value is found.






	Returns:	A clone of this TimeSeries with a new Collection generated by
the fill operation.




	Return type:	TimeSeries












	
fixed_window_rollup(window_size, aggregation, to_events=False)

	Builds a new TimeSeries by dividing events within the TimeSeries
across multiple fixed windows of size windowSize.

Note that these are windows defined relative to Jan 1st, 1970,
and are UTC, so this is best suited to smaller window sizes
(hourly, 5m, 30s, 1s etc), or in situations where you don’t care
about the specific window, just that the data is smaller.

Each window then has an aggregation specification applied as
aggregation. This specification describes a mapping of output
columns to fieldNames to aggregation functions. For example:

{
    'in_avg': {'in': Functions.avg()},
    'out_avg': {'out': Functions.avg()},
    'in_max': {'in': Functions.max()},
    'out_max': {'out': Functions.max()},
}





will aggregate both the “in” and “out” columns, using the avg
aggregation function will perform avg and max aggregations on the
in and out columns, across all events within each hour, and the
results will be put into the 4 new columns in_avg, out_avg, in_max
and out_max.

Example:

timeseries = TimeSeries(data)
daily_avg = timeseries.fixed_window_rollup('1d',
    {'value_avg': {'value': Functions.avg()}}
)









	Parameters:	
	window_size (str) – The size of the window, e.g. ‘6h’ or ‘5m’

	aggregation (Options) – The aggregation specification

	to_events (bool, optional) – Convert to events






	Returns:	The resulting rolled up TimeSeries




	Return type:	TimeSeries












	
hourly_rollup(aggregation, to_events=False)

	Builds a new TimeSeries by dividing events into hours. The hours are
in either local or UTC time, depending on if utc(true) is set on the
Pipeline.

Each window then has an aggregation specification applied as
aggregation. This specification describes a mapping of output
columns to fieldNames to aggregation functions. For example:

{
    'in_avg': {'in': Functions.avg()},
    'out_avg': {'out': Functions.avg()},
    'in_max': {'in': Functions.max()},
    'out_max': {'out': Functions.max()},
}





will aggregate both the “in” and “out” columns, using the avg
aggregation function will perform avg and max aggregations on the
in and out columns, across all events within each hour, and the
results will be put into the 4 new columns in_avg, out_avg, in_max
and out_max.

Example:

timeseries = TimeSeries(data)
hourly_max_temp = timeseries.hourly_rollup(
    {'max_temp': {'temperature': Functions.max()}}
)









	Parameters:	
	aggregation (dict) – The aggregation specification e.g. {‘max_temp’: {‘temperature’: Functions.max()}}

	to_event (bool, optional) – Do conversion to Event objects






	Returns:	The resulting rolled up TimeSeries.




	Return type:	TimeSeries












	
index()

	Get the index.





	Returns:	Get the index.


	Return type:	Index










	
index_as_range()

	Index returned as time range.





	Returns:	Index as a TimeRange or None


	Return type:	TimeRange










	
index_as_string()

	Index represented as a string.





	Returns:	String format of Index or None.


	Return type:	str










	
is_utc()

	Get data utc.






	
map(op)

	
	Takes an operator that is used to remap events from this TimeSeries to

	new set of Events. The result is returned via the callback.







	Parameters:	op (function) – An operator which will be passed each event and which should
return a new event.


	Returns:	A clone of this TimeSeries with a new Collection generated by
the map operation.


	Return type:	TimeSeries










	
max(field_path=None, filter_func=None)

	Get max





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Max value




	Return type:	int or float












	
mean(field_path=None, filter_func=None)

	Get mean





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Mean value




	Return type:	int or float












	
median(field_path=None, filter_func=None)

	Get median





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Median value




	Return type:	int or float












	
meta(key=None)

	Returns the meta data about this TimeSeries as a JSON object





	Parameters:	key (str, optional) – Optional metadata key to fetch value for


	Returns:	Return a thawed metadata dict or the value specified by key.


	Return type:	dict or key/value










	
min(field_path=None, filter_func=None)

	Get min





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Min value




	Return type:	int or float












	
monthly_rollup(aggregation, to_events=False, utc=False)

	Builds a new TimeSeries by dividing events into months. The months are
in either local or UTC time, depending on if utc(true) is set on the
Pipeline.

Each window then has an aggregation specification applied as
aggregation. This specification describes a mapping of output
columns to fieldNames to aggregation functions. For example:

{
    'in_avg': {'in': Functions.avg()},
    'out_avg': {'out': Functions.avg()},
    'in_max': {'in': Functions.max()},
    'out_max': {'out': Functions.max()},
}





will aggregate both the “in” and “out” columns, using the avg
aggregation function will perform avg and max aggregations on the
in and out columns, across all events within each month, and the
results will be put into the 4 new columns in_avg, out_avg, in_max
and out_max.

Example:

timeseries = TimeSeries(data)
hourly_max_temp = timeseries.monthly_rollup(
    {'max_temp': {'temperature': Functions.max()}}
)





This helper function defaults to rendering the aggregations in localtime.
The reason for this is that rendering in localtime makes the most sense
on the client side - like rendering a timeseries chart. A user looking
at a chart in UTC might not make much sense.

Since this is now being used in servers side applications, the optional
arg utc can be set to True to force it to render in UTC instead.

Probably best to favor using .fixed_window_rollup() when wanting to
render in UTC.





	Parameters:	
	aggregation (dict) – The aggregation specification e.g. {‘max_temp’: {‘temperature’: Functions.max()}}

	to_event (bool, optional) – Do conversion to Event objects






	Returns:	The resulting rolled up TimeSeries.




	Return type:	TimeSeries












	
name()

	Get data name.





	Returns:	Data name.


	Return type:	str










	
percentile(perc, field_path, method='linear', filter_func=None)

	Gets percentile perc within the Collection. Numpy under
the hood.





	Parameters:	
	perc (int) – The percentile (should be between 0 and 100)

	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	method (str, optional) – Specifies the interpolation method to use when the desired
percentile lies between two data points. Options are:

linear: i + (j - i) * fraction, where fraction is the fractional
part of the index surrounded by i and j.

lower: i

higher: j

nearest: i or j whichever is nearest

midpoint: (i + j) / 2








	Returns:	The percentile.




	Return type:	int or float












	
pipeline()

	Returns a new Pipeline with input source being initialized to
this TimeSeries collection. This allows pipeline operations
to be chained directly onto the TimeSeries to produce a new
TimeSeries or Event result.





	Returns:	New pipline.


	Return type:	Pipeline










	
quantile(num, field_path=None, method='linear')

	Gets num quantiles within the Collection





	Parameters:	
	num (Number of quantiles to divide the Collection into.) – Description

	field_path (None, optional) – The field to return as the quantile. If not set, defaults
to ‘value.’

	method (str, optional) – Specifies the interpolation method to use when the desired
percentile lies between two data points. Options are:

linear: i + (j - i) * fraction, where fraction is the fractional
part of the index surrounded by i and j.

lower: i

higher: j

nearest: i or j whichever is nearest

midpoint: (i + j) / 2








	Returns:	An array of quantiles




	Return type:	list












	
range()

	Alias for timerange()





	Returns:	TimeRange internal of the underly collection.


	Return type:	TimeRange










	
rate(field_spec=None, allow_negative=True)

	derive entry point






	
rename_columns(rename_map)

	TimeSeries.map() helper function to rename columns in the underlying
events.

Takes a dict of columns to rename:

new_ts = ts.rename_columns({'in': 'new_in', 'out': 'new_out'})





Returns a new time series containing new events. Columns not
in the dict will be retained and not renamed.

NOTE: as the name implies, this will only rename the main
“top level” (ie: non-deep) columns. If you need more
extravagant renaming, roll your own using map().





	Parameters:	rename_map (dict) – Dict of columns to rename.


	Returns:	A clone of this TimeSeries with a new Collection generated by
the map operation.


	Return type:	TimeSeries










	
static same(series1, series2)

	Implements JS Object.is() - same values





	Parameters:	
	series1 (TimeSeries) – A time series

	series2 (TimeSeries) – Another time series






	Returns:	Do the two have the same values?




	Return type:	bool












	
select(field_spec=None)

	call select on the pipeline.





	Parameters:	field_spec (str, list, tuple, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.

If None, the default ‘value’ column will be used.




	Returns:	A clone of this TimeSeries with a new Collection generated by
the select operation.


	Return type:	TimeSeries










	
set_collection(coll)

	Sets a new underlying collection for this TimeSeries.





	Parameters:	coll (Collection) – New collection to assign to this TimeSeries


	Returns:	New TimeSeries with Collection coll


	Return type:	TimeSeries










	
set_meta(key, value)

	Change the metadata of the TimeSeries





	Parameters:	
	key (str) – The metadata key

	value (obj) – The value






	Returns:	A new TimeSeries with new metadata.




	Return type:	TimeSeries












	
set_name(name)

	Set name and generate a new TimeSeries





	Parameters:	name (str) – New name


	Returns:	Return a TimeSeries with a new name.


	Return type:	TimeSeries










	
size()

	Number of rows in series.





	Returns:	Number in the series.


	Return type:	int










	
size_valid(field_path)

	Returns the number of valid items in this collection.

Uses the fieldSpec to look up values in all events.
It then counts the number that are considered valid,
i.e. are not NaN, undefined or null.





	Parameters:	field_path (str, list, tuple, None, optional) – Name of value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.




	Returns:	Number of valid <field_path> values in the events.


	Return type:	int










	
slice(begin, end)

	Perform a slice of events within the TimeSeries, returns a new
TimeSeries representing a portion of this TimeSeries from begin up to
but not including end. Uses typical python [slice:syntax].





	Parameters:	
	begin (int) – Slice begin index

	end (int) – Slice end index






	Returns:	New instance with sliced collection.




	Return type:	TimeSeries












	
stdev(field_path=None, filter_func=None)

	Get std dev





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Standard deviation




	Return type:	int or float












	
sum(field_path=None, filter_func=None)

	Get sum





	Parameters:	
	field_path (str, list, tuple, None, optional) – Name of a single value to look up. If None, defaults to [‘value’].
“Deep” syntax either [‘deep’, ‘value’], (‘deep’, ‘value’,)
or ‘deep.value.’

If field_path is None, then [‘value’] will be the default.



	filter_func (function, None) – A function (static method really) from the Filters class in module
pypond.functions.Filters. It will control how bad or missing
(None, NaN, empty string) values will be cleansed or filtered
during aggregation. If no filter is specified, then the missing
values will be retained which will potentially cause errors.






	Returns:	Summed values




	Return type:	int or float












	
timerange()

	Returns the extents of the TimeSeries as a TimeRange..





	Returns:	TimeRange internal of the underly collection.


	Return type:	TimeRange










	
static timeseries_list_merge(data, series_list)

	Merge a list of time series.





	Parameters:	
	data (dict or pvector) – Data payload

	series_list (list) – List of TimeSeries instances.






	Returns:	New TimeSeries from merge.




	Return type:	TimeSeries












	
static timeseries_list_reduce(data, series_list, reducer, field_spec=None)

	Reduces a list of TimeSeries objects using a reducer function. This works
by taking each event in each TimeSeries and collecting them together
based on timestamp. All events for a given time are then merged together
using the reducer function to produce a new Event. Those Events are then
collected together to form a new TimeSeries.





	Parameters:	
	data (dict or pmap) – Data payload

	series_list (list) – List of TimeSeries objects.

	reducer (function) – reducer function

	field_spec (list, str, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.

Can be set to None if the reducer does not require a field spec.








	Returns:	New time series containing the mapped events.




	Return type:	TimeSeries












	
static timeseries_list_sum(data, series_list, field_spec)

	Takes a list of TimeSeries and sums them together to form a new
Timeseries.

const ts1 = new TimeSeries(weather1)
const ts2 = new TimeSeries(weather2)
const sum = TimeSeries.timeseries_list_sum({name: “sum”}, [ts1, ts2], [“temp”])





	Parameters:	
	data (dict) – Data payload

	series_list (list) – List of TimeSeries objects

	field_spec (list, str, None, optional) – Column or columns to look up. If you need to retrieve multiple deep
nested values that [‘can.be’, ‘done.with’, ‘this.notation’].
A single deep value with a string.like.this.  If None, all columns
will be operated on.






	Returns:	New time series with summed values.




	Return type:	TimeSeries












	
to_json()

	Returns the TimeSeries as a python dict.

This is actually like json.loads(s) - produces the
actual vanilla data structure.





	Returns:	Dictionary of columns and points


	Return type:	dict










	
to_string()

	Retruns the TimeSeries as a string, useful for serialization.

In JS land, this is synonymous with __str__ or __unicode__





	Returns:	String version of to_json() for transmission/etc.


	Return type:	str










	
yearly_rollup(aggregation, to_events=False, utc=False)

	Builds a new TimeSeries by dividing events into years. The years are
in either local or UTC time, depending on if utc(true) is set on the
Pipeline.

Each window then has an aggregation specification applied as
aggregation. This specification describes a mapping of output
columns to fieldNames to aggregation functions. For example:

{
    'in_avg': {'in': Functions.avg()},
    'out_avg': {'out': Functions.avg()},
    'in_max': {'in': Functions.max()},
    'out_max': {'out': Functions.max()},
}





will aggregate both the “in” and “out” columns, using the avg
aggregation function will perform avg and max aggregations on the
in and out columns, across all events within each year, and the
results will be put into the 4 new columns in_avg, out_avg, in_max
and out_max.

Example:

timeseries = TimeSeries(data)
hourly_max_temp = timeseries.monthly_rollup(
    {'max_temp': {'temperature': Functions.max()}}
)





This helper function defaults to rendering the aggregations in localtime.
The reason for this is that rendering in localtime makes the most sense
on the client side - like rendering a timeseries chart. A user looking
at a chart in UTC might not make much sense.

Since this is now being used in servers side applications, the optional
arg utc can be set to True to force it to render in UTC instead.

Probably best to favor using .fixed_window_rollup() when wanting to
render in UTC.





	Parameters:	
	aggregation (dict) – The aggregation specification e.g. {‘max_temp’: {‘temperature’: Functions.max()}}

	to_event (bool, optional) – Do conversion to Event objects






	Returns:	The resulting rolled up TimeSeries.




	Return type:	TimeSeries


















pypond.timerange_event module

TimeRangeEvent associates data with a specific time range rather than
at a discret time like Event does.


	
class pypond.timerange_event.TimeRangeEvent(instance_or_args, arg2=None)

	Bases: pypond.event.EventBase

The creation of an TimeRangeEvent is done by combining two parts -
the timerange and the data.

To construct you specify a TimeRange, along with the data.

The first arg can be:


	a TimeRangeEvent instance (copy ctor)

	a pyrsistent.PMap, or

	a python tuple, list or pyrsistent.PVector object containing two
python datetime objects or ms timestamps - the args for the
TimeRange object.



To specify the data you can supply either:


	a python dict

	a pyrsistent.PMap, or

	a simple type such as an integer. In the case of the simple type
this is a shorthand for supplying {“value”: v}.







	Parameters:	
	instance_or_args (TimeRange, iterable, pyrsistent.pmap) – See above

	arg2 (dict, pmap, int, float, str, optional) – See above.










	
begin()

	The begin time of this Event, which will be just the timestamp.





	Returns:	Beginning of range.


	Return type:	datetime.datetime










	
end()

	The end time of this Event, which will be just the timestamp.





	Returns:	End of range.


	Return type:	datetime.datetime










	
humanize_duration()

	Humanize the timerange.





	Returns:	Humanized string of the time range.


	Return type:	str










	
key()

	Returns a range string in the format ‘begin,end’ as expressed
as ms since the epoch.





	Returns:	The begin and end of the timerange in ms since the epoch.


	Return type:	str










	
set_data(data)

	Sets the data portion of the event and returns a new TimeRangeEvent.





	Parameters:	
	data (dict) – The new data portion for this event object.

	data – New payload to set as the data for this event.






	Returns:	TimeRangeEvent - a new TimeRangeEvent object.




	Returns:	A new time range event object with new data payload.




	Return type:	TimeRangeEvent












	
timerange()

	The TimeRange of this data.





	Returns:	The underlying time range object.


	Return type:	TimeRange










	
timerange_as_local_string()

	The timerange of this data, in Local time, as a string.





	Returns:	Formatted time string.


	Return type:	str










	
timerange_as_utc_string()

	The timerange of this data, in UTC time, as a string.





	Returns:	Formatted time string


	Return type:	str










	
timestamp()

	The timestamp of this Event data. It’s just the beginning
of the range in this case.





	Returns:	Beginning of range.


	Return type:	datetime.datetime










	
to_json()

	
Returns the TimeRangeEvent as a JSON object, essentially


{timerange: tr, data: {key: value, ...}}





This is actually like json.loads(s) - produces the
actual data structure from the object internal data.





	Returns:	Dict representation of internals (timerange, data).


	Return type:	dict










	
to_point(cols=None)

	Returns a flat array starting with the timestamp, followed by the values.

Can be given an optional list of columns so the returned list will
have the values in order. Primarily for the TimeSeries wire format.





	Parameters:	cols (list, optional) – List of data columns to order the data points in so the
TimeSeries wire format lines up correctly. If not specified,
the points will be whatever order that dict.values() decides
to return it in.


	Returns:	Epoch ms followed by points.


	Return type:	list










	
type()

	Return the type of this event type





	Returns:	The class of this event type.


	Return type:	class
















pypond.util module

Various utilities for the pypond code.  Primarily functions to take
care of consistent handling and conversion of time values as we are
trying to traffic in aware datetime objects in UTC time.

Additionally some boolean test functions and assorted other utility functions.


	
class pypond.util.Capsule(**kwargs)

	Bases: pypond.util.Options

Straight subclass of Options so there is no confusion between this
and the pipeline Options. Employing this to mimic the Javascript
Object in cases where using a Python dict would cause confusion
porting the code.






	
class pypond.util.ObjectEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None)

	Bases: json.encoder.JSONEncoder

Class to allow arbitrary python objects to be json encoded with
json.dumps()/etc by defining a .to_json() method on your object.

We need this for encoding lists of custom Event (etc) objects.

Usage: json.dumps(your_cool_object, cls=ObjectEncoder)


	
default(obj)

	








	
class pypond.util.Options(**kwargs)

	Bases: object

Encapsulation object for Pipeline options.

Example:

o = Options(foo='bar')

and

o = Options()
o.foo = 'bar'

Are identical.









	Parameters:	initial (dict, optional) – Can supply keyword args for initial values.






	
to_dict()

	








	
pypond.util.aware_dt_from_args(dtargs, localize=False)

	generate an aware datetime object using datetime.datetime kwargs.

can generate a localized version as well, but please don’t.





	Parameters:	
	dtargs (dict) – Dict containing the args you pass to datetime.datetime.

	localize (bool, optional) – Will create a new object in localtime, but just don’t do it.






	Returns:	New datetime object




	Return type:	datetime.datetime




	Raises:	UtilityException – Raised if the args are wrong type.












	
pypond.util.aware_utcnow()

	return an aware utcnow() datetime rounded to milliseconds.





	Returns:	New datetime object


	Return type:	datetime.datetime










	
pypond.util.dt_from_ms(msec)

	generate a datetime object from epoch milliseconds





	Parameters:	msec (int) – epoch milliseconds


	Returns:	New datetime object from ms


	Return type:	datetime.datetime










	
pypond.util.dt_is_aware(dtime)

	see if a datetime object is aware





	Parameters:	dtime (datetime.datetime) – A datetime object


	Returns:	Returns True if the dtime is aware/non-naive.


	Return type:	bool










	
pypond.util.format_dt(dtime, localize=False)

	Format for human readable output.





	Parameters:	
	dtime (datetime.datetime) – A datetime object

	localize (bool, optional) – Display as local time.






	Returns:	Formatted date string.




	Return type:	str












	
pypond.util.generate_paths(dic)

	Generate a list of all possible field paths in a dict. This is
for determining all paths in a dict when none is given.

Currently unused, but keeping since we will probably need it.





	Parameters:	dic (dict) – A dict, generally the payload from an Event class.


	Returns:	A list of strings of all the paths in the dict.


	Return type:	list










	
pypond.util.humanize_dt(dtime)

	format time format display for humanize maneuvers.





	Parameters:	dtime (datetime.datetime) – A datetime object


	Returns:	Datetime formatted as a string.


	Return type:	str










	
pypond.util.humanize_dt_ago(dtime)

	format to “23 minutes ago” style format.





	Parameters:	dtime (datetime.datetime) – A datetime object


	Returns:	Humanized string.


	Return type:	str










	
pypond.util.humanize_duration(delta)

	format for a single duration value - takes datatime.timedelta as arg





	Parameters:	delta (datetime.timedelta) – A time delta


	Returns:	Humanize delta to duration.


	Return type:	str










	
pypond.util.is_function(func)

	Test if a value is a function.





	Parameters:	func (obj) – A value


	Returns:	Is the object a python function?


	Return type:	bool










	
pypond.util.is_nan(val)

	Test if a value is NaN





	Parameters:	val (obj) – A value


	Returns:	Is it NaN?


	Return type:	bool










	
pypond.util.is_pipeline(obj)

	Test if something is a Pipeline object. This is put here
with a deferred import statement to avoid circular imports
so the I/O don’t need to import pipeline.py.

This probably does not need to be deferred but doing it
for safety sake.





	Parameters:	obj (object) – An object to test to see if it’s a Pipeline.


	Returns:	True if Pipeline


	Return type:	bool










	
pypond.util.is_pmap(pmap)

	Check this here so people don’t mistake pmap and PMap.





	Parameters:	pmap (obj) – An object


	Returns:	Returns True if it is a pyrsistent.pmap


	Return type:	bool










	
pypond.util.is_pvector(pvector)

	Check this here so people don’t mistake PVector and pvector.





	Parameters:	pvector (obj) – An object


	Returns:	Returns True if it is a pyrsistent.pvector


	Return type:	bool










	
pypond.util.is_valid(val)

	Test if a value is valid.





	Parameters:	val (obj) – A value


	Returns:	Is it valid?


	Return type:	bool










	
pypond.util.localtime_from_ms(msec)

	generate an aware localtime datetime object from ms





	Parameters:	msec (int) – epoch milliseconds


	Returns:	New datetime object


	Return type:	datetime.datetime










	
pypond.util.localtime_info_from_utc(dtime)

	Extract local TZ formatted values from an aware UTC datetime object.
This is used by the index string methods when grouping data for
local display.





	Parameters:	dtime (datetime.datetime) – An aware UTC datetime object


	Returns:	A dict with formatted elements (zero-padded months, etc) extracted
from the local version.


	Return type:	dict










	
pypond.util.monthdelta(date, delta)

	because we wish datetime.timedelta had a month kwarg.

Courtesy of: http://stackoverflow.com/a/3425124/3916180





	Parameters:	
	date (datetime.date) – Date object

	delta (int) – Month delta






	Returns:	New Date object with delta offset.




	Return type:	datetime.date












	
pypond.util.ms_from_dt(dtime)

	Turn a datetime object into ms since epoch.





	Parameters:	dtime (datetime.datetime) – A datetime object


	Returns:	epoch milliseconds


	Return type:	int










	
pypond.util.nested_get(dic, keys)

	Address a nested dict with a list of keys to fetch a value.
This is functionaly similar to the standard functools.reduce()
method employing dict.get, but this returns ‘bad_path’ if the path
does not exist. This is because we need to differentiate between
an existing value that is actually None vs. the dict.get()
failover. Would have preferred to return False, but who knows
if we’ll end up with data containing Boolean values.

sample_dict = dict()
nested_set(sample_dict, ['bar', 'baz'], 23)
nested_get(sample_dict, ['bar', 'quux'])
False





Unlike nested_set(), this will not create a new path branch if
it does not already exist.





	Parameters:	
	dic (dict) – The dict we are working with

	keys (list) – A lsit of nested keys






	Returns:	Whatever value was at the terminus of the keys.




	Return type:	obj












	
pypond.util.nested_set(dic, keys, value)

	Address a nested dict with a list of keys and set a value.
If part of the path does not exist, it will be created.

sample_dict = dict()
nested_set(sample_dict, ['bar', 'baz'], 23)
{'bar': {'baz': 23}}
nested_set(sample_dict, ['bar', 'baz'], 25)
{'bar': {'baz': 25}}









	Parameters:	
	dic (dict) – The dict we are workign with.

	keys (list) – A list of nested keys

	value (obj) – Whatever we want to set the ultimate key to.














	
pypond.util.sanitize_dt(dtime, testing=False)

	Make sure the datetime object is in UTC/etc. Also round incoming
datetime objects to milliseconds.

Allow disabling warnings when testing. Warning primarily exists
to herd users into not passing in non-UTC tz datetime objects.





	Parameters:	
	dtime (datetime.datetime) – A datetime object

	testing (bool, optional) – Suppress warnings when testing.






	Returns:	New datetime object rounded to ms from microseconds.




	Return type:	datetime.datetime












	
pypond.util.to_milliseconds(dtime)

	Check to see if a datetime object has granularity smaller
than millisecond (ie: microseconds) and massage back to ms if so.

Doing this round-trip seems kludgy and inefficient, but doing this:

return dtime.replace(millisecond=round(dt.millisecond, -3))

produced inconsistent results because of the rounding and I’m not
going to start treating numbers like strings.





	Parameters:	dtime (datetime.datetime) – A datetime object.


	Returns:	New datetime object rounded down to milliseconds from microseconds.


	Return type:	datetime.datetime










	
pypond.util.unique_id(prefix='')

	generate a uuid with a prefix - for debugging. This probably isn’t
truly random but it’s random enough. Calling uuid.uuid4() was imposing
non-trivial drag on performance. The calls to /dev/urandom can block
on certain unix-like systems.





	Parameters:	prefix (str, optional) – Prefix for uuid.


	Returns:	Prefixed uuid.


	Return type:	str












Module contents







          

      

      

    

  

    
      
          
            
  
pypond.io package


Submodules




pypond.io.input module

Classes to handle pipeline input.


	
class pypond.io.input.Bounded

	Bases: pypond.io.input.PipelineIn

For the pipeline - source of a fixed size - like a collection.


	
on_emit()

	




	
start()

	




	
stop()

	








	
class pypond.io.input.PipelineIn

	Bases: pypond.bases.Observable

For the pipeline - raise exceptions if an attempt is made to
add heterogenous types.






	
class pypond.io.input.Stream

	Bases: pypond.io.input.PipelineIn

For the pipeline - a source that has no container of its own.


	
add_event(event)

	Type check and event and emit it if we are running have have observers.





	Parameters:	event (Event) – Some Event class










	
events()

	Raise an exception - can’t iterate an unbounded source.






	
start()

	




	
stop()

	










pypond.io.output module

Objects to handle Pipeline output and event collection.


	
class pypond.io.output.CollectionOut(pipeline, callback, options)

	Bases: pypond.io.output.PipelineOut

Output object for when processor results are being returned
as a collection.





	Parameters:	
	pipeline (Pipeline) – A reference to the calling Pipeline instance.

	callback (function or None) – Will either be a function that the collector callback will
pass things to or None which will pass the results back to
the calling Pipeline.

	options (Options) – An Options object.










	
add_event(event)

	Add an event to the collector.





	Parameters:	event (Event) – An event object










	
flush()

	Flush the collector and mark the results_done = True in the
pipeline if there is no longer an observer.






	
on_emit(callback)

	Sets the internal callback.





	Parameters:	callback (function or None) – Value to set the intenal _callback to.














	
class pypond.io.output.Collector(options, on_trigger)

	Bases: pypond.bases.PypondBase

A Collector is used to accumulate events into multiple collections,
based on potentially many strategies. In this current implementation
a collection is partitioned based on the window that it falls in
and the group it is part of.

Collections are emitted from this class to the supplied onTrigger
callback.





	Parameters:	
	options (Options) – A pipeline options instance

	on_trigger (function) – Callback to handle the emitted Collection










	
add_event(event)

	Add and event to the _collections dict and act accordingly
depending on how _emit_on is set.





	Parameters:	event (Event) – An event.


	Raises:	PipelineIOException – Raised on bad args.










	
emit_collections(collections)

	Emit all of the collections to the trigger callback that was
passed in by the Processor





	Parameters:	collections (dict) – A dict of string keys and Capsule objects containing the
window_key, group_by_key and a Collection.










	
flush_collections()

	Emit the remaining collections.










	
class pypond.io.output.EventOut(pipeline, callback=None, options=<pypond.util.Options object>)

	Bases: pypond.io.output.PipelineOut

Output object for when processor results are being returned
as events.





	Parameters:	
	pipeline (Pipeline) – A reference to the calling Pipeline instance.

	callback (function or None) – Will either be a function that the collector callback will
pass things to or None which will pass the results back to
the calling Pipeline.

	options (Options) – An Options object.










	
add_event(event)

	Add an event to the pipeline or callback.





	Parameters:	event (Event) – An event object










	
flush()

	Mark the results_done = True in the pipeline if there is no longer
an observer.






	
on_emit(callback)

	Sets the internal callback.





	Parameters:	callback (function or None) – Value to set the intenal _callback to.














	
class pypond.io.output.PipelineOut(pipeline)

	Bases: pypond.bases.PypondBase

Base class for pipeline output classes





	Parameters:	pipeline (Pipeline) – The Pipeline












Module contents







          

      

      

    

  

    
      
          
            
  
pypond.processor package


Submodules




pypond.processor.aggregator module

Processor that adds events to collector given windowing and grouping options.


	
class pypond.processor.aggregator.Aggregator(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

An Aggregator takes incoming events and adds them to a Collector
with given windowing and grouping parameters. As each Collection is
emitted from the Collector it is aggregated into a new event
and emitted from this Processor.





	Parameters:	
	arg1 (Aggregator or Pipeline) – Copy constructor or the pipeline.

	options (Options) – Options object.










	
add_event(event)

	Add an event to the collector.





	Parameters:	event (Event) – An event object










	
clone()

	clone it.






	
flush()

	flush.












pypond.processor.align module

Simple processor to change the event values by a certain offset.

Primarily for testing.


	
class pypond.processor.align.Align(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

A processor to align the data into bins of regular time period.





	Parameters:	
	arg1 (Align or Pipeline) – Pipeline or copy constructor

	options (Options, optional) – Pipeline Options object.






	Raises:	ProcessorException – Raised on bad arg types.








	
add_event(event)

	Output an even that is Align by a certain value.





	Parameters:	event (Event) – An Event.










	
clone()

	Clone this Align processor.





	Returns:	Cloned Align object.


	Return type:	Align
















pypond.processor.base module

Base class for all processors.


	
class pypond.processor.base.Processor(arg1, options)

	Bases: pypond.bases.Observable

Base class for all pipeline processors.


	
chain()

	Return the chain






	
pipeline()

	Return the pipeline






	
prev()

	Return prev










	
pypond.processor.base.add_prev_to_chain(n, chain)

	Recursive function to add values to the chain.








pypond.processor.collapser module

Collapse the columns and return a new event


	
class pypond.processor.collapser.Collapser(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

A processor which takes a fieldSpec and returns a new event
with a new column that is a collapsed result of the selected
columns. To collapse the columns it uses the supplied reducer
function. Optionally the new column can completely replace
the existing columns in the event.





	Parameters:	
	arg1 (Collapser or Pipeline) – Copy constructor or the pipeline.

	options (Options) – Options object.










	
add_event(event)

	Perform the collapse operation on the event and emit.





	Parameters:	event (Event, IndexedEvent, TimerangeEvent) – Any of the three event variants.










	
clone()

	clone it.












pypond.processor.converter module

Convert an event into another event type.


	
class pypond.processor.converter.Converter(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

A processor that converts an event type to another event type.





	Parameters:	
	arg1 (Converter or Pipeline) – Copy constructor or the pipeline.

	options (Options) – Options object.










	
add_event(event)

	Perform the conversion on the event and emit.





	Parameters:	event (Event, IndexedEvent, TimerangeEvent) – Any of the three event variants.










	
clone()

	clone it.






	
convert_event(event)

	Convert an Event





	Parameters:	event (Event) – An incoming Event object for conversion.


	Returns:	The converted Event.


	Return type:	TimeRangeEvent or IndexedEvent










	
convert_indexed_event(event)

	Convert an IndexedEvent





	Parameters:	event (IndexedEvent) – An incoming IndexedEvent object for conversion.


	Returns:	The converted IndexedEvent.


	Return type:	TimeRangeEvent or Event










	
convert_time_range_event(event)

	Convert a TimeRangeEvent





	Parameters:	event (TimeRangeEvent) – An incoming TimeRangeEvent object for conversion.


	Returns:	The converted TimeRangeEvent. Can not convert to IndexedEvent.


	Return type:	Event
















pypond.processor.filler module

A processor to fill missing and invalid values.


	
class pypond.processor.filler.Filler(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

A processor that fills missing/invalid values in the event
with new values (zero, interpolated or padded).

When doing a linear fill, Filler instances should be chained.
See the Fill/sanitize doc (sanitize.md) for details.

If no field_spec is supplied, the default field ‘value’ will be used.





	Parameters:	
	arg1 (Filler or Pipeline) – Copy constructor or the pipeline.

	options (Options) – Options object.










	
add_event(event)

	Perform the fill operation on the event and emit.





	Parameters:	event (Event, IndexedEvent, TimerangeEvent) – Any of the three event variants.










	
clone()

	clone it.






	
flush()

	Don’t delegate flush to superclass yet. Make sure
there are no cached events (could happen if we stop
seeing valid events) before passing it up the food
chain.












pypond.processor.filter module

Processor that takes an operator to control event flow.


	
class pypond.processor.filter.Filter(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

A processor which takes an operator as its only option
and uses that to either output a new event.





	Parameters:	
	arg1 (Filter or Pipeline) – Copy constructor or the pipeline.

	options (Options) – Options object.










	
add_event(event)

	Perform the filter operation on the event and emit.





	Parameters:	event (Event, IndexedEvent, TimerangeEvent) – Any of the three event variants.










	
clone()

	clone it.












pypond.processor.mapper module

Take and operator and perform map operations


	
class pypond.processor.mapper.Mapper(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

A processor which takes an operator as its only option
and uses that to either output a new event.





	Parameters:	
	arg1 (Mapper or Pipeline) – Copy constructor or the pipeline.

	options (Options) – Options object.










	
add_event(event)

	Perform the map operation on the event and emit.





	Parameters:	event (Event, IndexedEvent, TimerangeEvent) – Any of the three event variants.










	
clone()

	clone it.












pypond.processor.offset module

Simple processor to change the event values by a certain offset.

Primarily for testing.


	
class pypond.processor.offset.Offset(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

A simple processor used by the testing code to verify Pipeline behavior.





	Parameters:	
	arg1 (Offset or Pipeline) – Pipeline or copy constructor

	options (Options, optional) – Pipeline Options object.






	Raises:	ProcessorException – Raised on bad arg types.








	
add_event(event)

	Output an even that is offset by a certain value.





	Parameters:	event (Event, IndexedEvent, TimerangeEvent) – Any of the three event variants.










	
clone()

	Clone this Offset processor.





	Returns:	Cloned offset object.


	Return type:	Offset
















pypond.processor.rate module

Simple processor generate the Rate of two Event objects and
emit them as a TimeRangeEvent. Can be used alone or chained
with the Align processor for snmp rates, etc.


	
class pypond.processor.rate.Rate(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

Generate rate from two events.





	Parameters:	
	arg1 (Rate or Pipeline) – Pipeline or copy constructor

	options (Options, optional) – Pipeline Options object.






	Raises:	ProcessorException – Raised on bad arg types.








	
add_event(event)

	Output an even that is Rate by a certain value.





	Parameters:	event (Event) – An Event.










	
clone()

	Clone this Rate processor.





	Returns:	Cloned Rate object.


	Return type:	Rate
















pypond.processor.selector module

Processor to return events with only selected columns


	
class pypond.processor.selector.Selector(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

A processor which takes a fieldSpec as its only argument
and returns a new event with only the selected columns





	Parameters:	
	arg1 (Selector or Pipeline) – Copy constructor or the pipeline.

	options (Options) – Options object.










	
add_event(event)

	Perform the select operation on the event and emit.





	Parameters:	event (Event, IndexedEvent, TimerangeEvent) – Any of the three event variants.










	
clone()

	clone it.












pypond.processor.taker module

Processor that limits the number of events that are processed.


	
class pypond.processor.taker.Taker(arg1, options=<pypond.util.Options object>)

	Bases: pypond.processor.base.Processor

A processor which limits the number of events that are processed.





	Parameters:	
	arg1 (Taker or Pipeline) – Copy constructor or the pipeline.

	options (Options) – Options object.










	
add_event(event)

	Output an event that is offset.





	Parameters:	event (Event, IndexedEvent, TimerangeEvent) – Any of the three event variants.










	
clone()

	clone it.






	
flush()

	










Module contents

Unify the processor classes from the individual modules so one can:

from pypond.processor import Mapper







          

      

      

    

  

    
      
          
            
  
esnet-gh-pages-base

Base templates for ESnet’s GitHub pages. These pages are created using the
Sphinx [http://sphinx-doc.org] documentation package using the sphinx-bootstrap-theme [https://github.com/ryan-roemer/sphinx-bootstrap-theme] with some
pages.  This repo is meant to be included into a project using git subtree and
provides the overrides and customizations to the base theme.


Installation


	Install Sphinx and sphinx-bootstrap-theme. See the instructions below for
installing these either using the Mac OS X base system python or MacPorts.

	cd $PROJECT_ROOT

	mkdir docs

	git subtree add --prefix docs/_esnet https://github.com/esnet/esnet-gh-pages-base.git master --squash

	cd docs

	sphinx-quickstart

	ln -s ../_esnet/static _static/esnet

	edit conf.py as described in the next section




Editing conf.py

sphinx-quickstart creates a basic conf.py file. In general the
defaults are OK and things can be fixed later by editing conf.py.
For author I suggest putting either the names of the people most
involved in writing the docs, the names of the developrs or if all
else fails, ESnet is fine. The project release and version should
map to the current version of the project your are documenting and it
is a good idea to try to keep that up to date going forward. It might
be worth automating this if you have a way to do so in the project
workflow.

However to use the ESnet theme we need to make some changes.
Make the following changes to conf.py:

# add this with the imports at the top of the file
import sphinx_bootstrap_theme

# change templates_path to this
templates_path = ['_esnet/templates']

# add _esnet to exclude_patterns
exclude_patterns = ['_build', '_esnet']

# change html_theme and html_theme_path:
html_theme = 'bootstrap'
html_theme_path = sphinx_bootstrap_theme.get_html_theme_path()

# add html_theme options:
html_theme_options = {
       "navbar_pagenav": False,
       "nosidebar": False,
       "navbar_class": "navbar",
       "navbar_site_name": "Section",
       "source_link_position": "footer",
    "navbar_links": [
        ("Index", "genindex"),
        ("ESnet", "https://www.es.net", True),
    ],
}

# add html_logo and html_sidebars
html_logo = "_esnet/static/logo-esnet-ball-sm.png"
html_sidebars = {'index': None, 'search': None, '*': ['localtoc.html']}
html_favicon = "_esnet/static/favicon.ico"
html_context = {
   "github_url": "https://github.com/esnet/PROJNAME",
}





That’s it!




Files to track in the project repo

The sphinx-quickstart command will create a number of files and the
sphinx build process will make files as well. I suggest not saving
sphinx build products in the project repo.  This works out to tracking
the following files in docs:

*.rst
Makefile
conf.py
_static/esnet  # to track the symlink created above





You’ll need to git add these files to your repo.  You may also want to
add the following rules to ${PROJECT_ROOT}/.gitignore:

# ignore Sphinx build products
/docs/_build








Sphinx Installation using Mac OS X Base Python


	sudo /usr/bin/easy_install pip

	sudo /usr/local/bin/pip install sphinx sphinx-bootstrap-theme






Sphinx Installation using MacPorts


	sudo port install python27 py27-pip py27-sphinx

	sudo port select pip py27-pip

	sudo port select sphinx py27-sphinx

	pip install sphinx sphinx-bootstrap-theme # make sure this is /opt/local/bin/pip








Creating Content, Previewing and Publishing

The files are in the docs directory.  Take a look at the content of
index.rst.  Take a look at the docs from other projects and review the
documentation for Sphinx [http://sphinx-doc.org].


Create the gh-pages branch

Follow the instructions at GitHub gh-pages creation to create the initial
gh-pages branch.

GitHub gh-pages creation: https://help.github.com/articles/creating-project-pages-manually




Building HTML

In the docs directory run make clean html.




Previewing the site

open _build/html/index.html

or

open -a /Application/Google\ Chrome.app _build/html/index.html




Publishing the site

From the docs directory run _esnet/deploy.sh.  It will be visible at:
http://github.com/esnet/PROJECT.









          

      

      

    

  _static/up-pressed.png





_static/comment-bright.png





_images/align.png
vl

2





_static/minus.png





_static/file.png





_static/ajax-loader.gif





_static/up.png





nav.xhtml

    
      Table of Contents


      
        		PyPond - Python Pond timeseries library.


        		API Documentation


        		Notes on time handling
          
          		UTC vs. local time
            
            		Initializing Event objects


            		Rendering in local time


            		Local time and the IndexedEvent class


            


          


          		Precision


          


        


        		Data columns: field_spec and field_path
          
          		field_path
            
            		String variant


            		List variant


            		None


            


          


          		field_spec
            
            		String variant


            		List variant


            		None


            


          


          		field_spec_list


          


        


        		Fill and other sanitizing methods
          
          		Fill
            
            		Usage


            		Fill methods


            


          


          		Rename
            
            		Usage


            		Limitations


            


          


          		Align
            
            		Usage


            		Fill methods


            


          


          		Rate (derivative)
            
            		Usage


            


          


          


        


        		Release notes
          
          		0.4


          		0.5
            
            		0.5.0


            


          


          


        


        		Running the tests


      


    
  

_static/comment-close.png





_static/down.png





_static/plus.png





_static/down-pressed.png





_static/comment.png





